Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines
Abstract
1. Introduction
2. Plasma Polymers
3. Plasma Polymers in Biomaterial Research
4. Plasma Deposited Polyoxazolines—The Importance of Deposition Conditions
4.1. PPOx Physico-Chemical Characterization
4.2. PPOx Unique Reactivity
4.3. PPOx in Novel Technology
5. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- d’Agostino, R.; Favia, P.; Oehr, C.; Wertheimer, M.R. Low-temperature plasma processing of materials: Past, present, and future. Plasma Process. Polym. 2005, 2, 7–15. [Google Scholar] [CrossRef]
- Chu, P.K.; Chen, J.Y.; Wang, L.P.; Huang, N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Rep. 2002, 36, 143–206. [Google Scholar] [CrossRef]
- Chapman, B. Glow Discharge Processes: Sputtering and Plasma Etching; Wiley: Hoboken, NY, USA, 1980. [Google Scholar]
- Coburn, J.W.; Winters, H.F. Plasma etching—A discussion of mechanisms. J. Vac. Sci. Technol. 1979, 16, 391–403. [Google Scholar] [CrossRef]
- Keudell, A.v.; Corbella, C. Review article: Unraveling synergistic effects in plasma-surface processes by means of beam experiments. J. Vac. Sci. Technol. A 2017, 35, 050801. [Google Scholar] [CrossRef] [PubMed]
- Borghi, F.F.; Rider, A.E.; Kumar, S.; Han, Z.J.; Haylock, D.; Ostrikov, K. Emerging stem cell controls: Nanomaterials and plasma effects. J. Nanomater. 2013, 2013, 15. [Google Scholar] [CrossRef]
- Xu, S.; Levchenko, I.; Huang, S.Y.; Ostrikov, K. Self-organized vertically aligned single-crystal silicon nanostructures with controlled shape and aspect ratio by reactive plasma etching. Appl. Phys. Lett. 2009, 95, 111505. [Google Scholar] [CrossRef]
- Mariotti, D.; Ostrikov, K. Tailoring microplasma nanofabrication: From nanostructures to nanoarchitectures. J. Phys. D Appl. Phys. 2009, 42, 092002. [Google Scholar] [CrossRef]
- Mariotti, D.; Bose, A.C.; Ostrikov, K. Atmospheric-microplasma-assisted nanofabrication: Metal and metal–oxide nanostructures and nanoarchitectures. IEEE Trans. Plasma Sci. 2009, 37, 1027–1033. [Google Scholar] [CrossRef]
- Wiedemair, J.; Serpe, M.J.; Kim, J.; Masson, J.-F.; Lyon, L.A.; Mizaikoff, B.; Kranz, C. In-situ AFM studies of the phase-transition behavior of single thermoresponsive hydrogel particles. Langmuir 2006, 23, 130–137. [Google Scholar] [CrossRef]
- Guimond, S.; Wertheimer, M.R. Surface degradation and hydrophobic recovery of polyolefins treated by air corona and nitrogen atmospheric pressure glow discharge. J. Appl. Polym. Sci. 2004, 94, 1291–1303. [Google Scholar] [CrossRef]
- Chatelier, R.C.; Griesser, H.J.; Steele, J.G.; Johnson, G. Cell Growth Substrates. U.S. Patent No. 5,449,383, 12 September 1995. [Google Scholar]
- Vandenbossche, M.; Hegemann, D. Recent approaches to reduce aging phenomena in oxygen- and nitrogen-containing plasma polymer films: An overview. Curr. Opin. Solid State Mater. Sci. 2018, 22, 26–38. [Google Scholar] [CrossRef]
- Hegemann, D.; Lorusso, E.; Butron-Garcia, M.-I.; Blanchard, N.E.; Rupper, P.; Favia, P.; Heuberger, M.; Vandenbossche, M. Suppression of hydrophobic recovery by plasma polymer films with vertical chemical gradients. Langmuir 2016, 32, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Saboohi, S.; Coad, B.R.; Griesser, H.J.; Michelmore, A.; Short, R.D. Synthesis of highly functionalised plasma polymer films from protonated precursor ions via the plasma α–γ transition. Phys. Chem. Chem. Phys. 2017, 19, 5637–5646. [Google Scholar] [CrossRef] [PubMed]
- Bormashenko, E.; Whyman, G.; Multanen, V.; Shulzinger, E.; Chaniel, G. Physical mechanisms of interaction of cold plasma with polymer surfaces. J. Colloid Interface Sci. 2015, 448, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Whittle, J.D.; Short, R.D.; Steele, D.A.; Bradley, J.W.; Bryant, P.M.; Jan, F.; Biederman, H.; Serov, A.A.; Choukurov, A.; Hook, A.L. Variability in plasma polymerization processes–an international Round-R obin study. Plasma Process. Polym. 2013, 10, 767–778. [Google Scholar] [CrossRef]
- Hegemann, D.; Nisol, B.; Watson, S.; Wertheimer, M.R. Energy conversion efficiency in plasma polymerization—A comparison of low- and atmospheric-pressure processes. Plasma Process. Polym. 2016, 13, 834–842. [Google Scholar] [CrossRef]
- Friedrich, J. Mechanisms of plasma polymerization—Reviewed from a chemical point of view. Plasma Process. Polym. 2011, 8, 783–802. [Google Scholar] [CrossRef]
- Yasuda, H. Plasma Polymerization; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Ostrikov, K.; Cvelbar, U.; Murphy, A.B. Plasma nanoscience: Setting directions, tackling grand challenges. J. Phys. D Appl. Phys. 2011, 44, 174001. [Google Scholar] [CrossRef]
- Vasilev, K.; Michelmore, A.; Griesser, H.J.; Short, R.D. Substrate influence on the initial growth phase of plasma-deposited polymer films. Chem. Commun. 2009, 24, 3600–3602. [Google Scholar] [CrossRef]
- Vasilev, K.; Michelmore, A.; Martinek, P.; Chan, J.; Sah, V.; Griesser, H.J.; Short, R.D. Early stages of growth of plasma polymer coatings deposited from nitrogen- and oxygen-containing monomers. Plasma Process. Polym. 2010, 7, 824–835. [Google Scholar] [CrossRef]
- Michelmore, A.; Martinek, P.; Sah, V.; Short, R.D.; Vasilev, K. Surface morphology in the early stages of plasma polymer film growth from amine-containing monomers. Plasma Process. Polym. 2011, 8, 367–372. [Google Scholar] [CrossRef]
- Goreham, R.V.; Mierczynska, A.; Pierce, M.; Short, R.D.; Taheri, S.; Bachhuka, A.; Cavallaro, A.; Smith, L.; Vasilev, K. A substrate independent approach for generation of surface gradients. Thin Solid Films 2013, 528, 106–110. [Google Scholar] [CrossRef]
- Hernandez-Lopez, J.L.; Bauer, R.E.; Chang, W.S.; Glasser, G.; Grebel-Koehler, D.; Klapper, M.; Kreiter, M.; Leclaire, J.; Majoral, J.P.; Mittler, S.; et al. Functional polymers as nanoscopic building blocks. Mater. Sci. Eng. C 2003, 23, 267–274. [Google Scholar] [CrossRef]
- Michelmore, A.; Whittle, J.D.; Short, R.D. The importance of ions in low pressure PECVD plasmas. Front. Phys. 2015, 3, 3. [Google Scholar] [CrossRef]
- Michelmore, A.; Steele, D.A.; Robinson, D.E.; Whittle, J.D.; Short, R.D. The link between mechanisms of deposition and the physico-chemical properties of plasma polymer films. Soft Matter 2013, 9, 6167–6175. [Google Scholar] [CrossRef]
- Hazrati, H.D.; Whittle, J.D.; Vasilev, K. A mechanistic study of the plasma polymerization of ethanol. Plasma Process. Polym. 2014, 11, 149–157. [Google Scholar] [CrossRef]
- Macgregor, M.N.; Michelmore, A.; Safizadeh Shirazi, H.; Whittle, J.; Vasilev, K. Secrets of plasma-deposited polyoxazoline functionality lie in the plasma phase. Chem. Mater. 2017, 29, 8047–8051. [Google Scholar] [CrossRef]
- Jacob, M.V.; Olsen, N.S.; Anderson, L.J.; Bazaka, K.; Shanks, R.A. Plasma polymerised thin films for flexible electronic applications. Thin Solid Films 2013, 546, 167–170. [Google Scholar] [CrossRef]
- Wong, W.W.H.; Rudd, S.; Ostrikov, K.; Ramiasa-MacGregor, M.; Subbiah, J.; Vasilev, K. Plasma deposition of organic polymer films for solar cell applications. Org. Electron. 2016, 32, 78–82. [Google Scholar] [CrossRef]
- Akhavan, B.; Jarvis, K.; Majewski, P. Hydrophobic plasma polymer coated silica particles for petroleum hydrocarbon removal. ACS Appl. Mater. Interfaces 2013, 5, 8563–8571. [Google Scholar] [CrossRef]
- Wahono, S.K.; Cavallaro, A.; Vasilev, K.; Mierczynska, A. Plasma polymer facilitated magnetic technology for removal of oils from contaminated waters. Environ. Pollut. 2018, 240, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, B.; Jarvis, K.; Majewski, P. Plasma polymer-functionalized silica particles for heavy metals removal. ACS Appl. Mater. Interfaces 2015, 7, 4265–4274. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, K.L.; Majewski, P. Removal of acid orange 7 dye from water via plasma-polymerized allylamine-coated quartz particles. Water Air Soil Pollut. 2014, 225, 2227. [Google Scholar] [CrossRef]
- Mierczynska-Vasilev, A.; Mierczynski, P.; Maniukiewicz, W.; Visalakshan, R.M.; Vasilev, K.; Smith, P.A. Magnetic separation technology: Functional group efficiency in the removal of haze-forming proteins from wines. Food Chem. 2019, 275, 154–160. [Google Scholar] [CrossRef]
- Mierczynska-Vasilev, A.; Boyer, P.; Vasilev, K.; Smith, P.A. A novel technology for the rapid, selective, magnetic removal of pathogenesis-related proteins from wines. Food Chem. 2017, 232, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Macgregor-Ramiasa, M.N.; Vasilev, K. Plasma polymer deposition: A versatile tool for stem cell research. In Advanced Surfaces for Stem Cell Research; John Wiley & Sons, Inc.: Hoboken, NY, USA, 2016; pp. 199–232. [Google Scholar]
- Coad, B.R.; Scholz, T.; Vasilev, K.; Hayball, J.D.; Short, R.D.; Griesser, H.J. Functionality of proteins bound to plasma polymer surfaces. ACS Appl. Mater. Interfaces 2012, 4, 2455–2463. [Google Scholar] [CrossRef]
- Ramiasa, M.; Cavallaro, A.; Mierczynska, A.; Christo, S.; Gleadle, J.; Hayball, J.; Vasilev, K. Plasma polymerised polyoxazoline thin films for biomedical applications. Chem. Commun. 2015, 51, 4279–4282. [Google Scholar] [CrossRef]
- Macgregor-Ramiasa, M.N.; Cavallaro, A.A.; Vasilev, K. Properties and reactivity of polyoxazoline plasma polymer films. J. Mater. Chem. B 2015, 3, 6327–6337. [Google Scholar] [CrossRef]
- Kumar, D.S.; Yoshida, Y. Dielectric properties of plasma polymerized pyrrole thin film capacitors. Surf. Coat. Technol. 2003, 169, 600–603. [Google Scholar] [CrossRef]
- Saboohi, S.; Al-Bataineh, S.A.; Safizadeh Shirazi, H.; Michelmore, A.; Whittle, J.D. Continuous-wave RF plasma polymerization of furfuryl methacrylate: Correlation between plasma and surface chemistry. Plasma Process. Polym. 2016, 14, 1600054. [Google Scholar] [CrossRef]
- Silverstein, M.; Visoly-Fisher, I. Plasma polymerized thiophene: Molecular structure and electrical properties. Polymer 2002, 43, 11–20. [Google Scholar] [CrossRef]
- Morales, J.; Olayo, M.; Cruz, G.; Castillo-Ortega, M.; Olayo, R. Electronic conductivity of pyrrole and aniline thin films polymerized by plasma. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 3247–3255. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M.V. Synthesis of radio frequency plasma polymerized non-synthetic terpinen-4-ol thin films. Mater. Lett. 2009, 63, 1594–1597. [Google Scholar] [CrossRef]
- Jacob, M.V.; Easton, C.D.; Woods, G.S.; Berndt, C.C. Fabrication of a novel organic polymer thin film. Thin Solid Films 2008, 516, 3884–3887. [Google Scholar] [CrossRef]
- Jacob, M.V.; Easton, C.D.; Anderson, L.J.; Bazaka, K. RF plasma polymerised thin films from natural resources. Int. J. Mod. Phys. Conf. Ser. 2014, 32, 1460319. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M.V.; Bowden, B.F. Optical and chemical properties of polyterpenol thin films deposited via plasma-enhanced chemical vapor deposition. J. Mater. Res. 2011, 26, 1018–1025. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M.V.; Truong, V.K.; Wang, F.; Pushpamali, W.A.A.; Wang, J.Y.; Ellis, A.V.; Berndt, C.C.; Crawford, R.J.; Ivanova, E.P. Plasma-enhanced synthesis of bioactive polymeric coatings from monoterpene alcohols: A combined experimental and theoretical study. Biomacromolecules 2010, 11, 2016–2026. [Google Scholar] [CrossRef]
- Michelmore, A.; Whittle, J.D.; Bradley, J.W.; Short, R.D. Where physics meets chemistry: Thin film deposition from reactive plasmas. Front. Chem. Sci. Eng. 2016, 10, 441–458. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M.V. Nanotribological and nanomechanical properties of plasma-polymerized polyterpenol thin films. J. Mater. Res. 2011, 26, 2952–2961. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M.V. Post-deposition ageing reactions of plasma derived polyterpenol thin films. Polym. Degrad. Stab. 2010, 95, 1123–1128. [Google Scholar] [CrossRef]
- Detomaso, L.; Gristina, R.; Senesi, G.S.; d’Agostino, R.; Favia, P. Stable plasma-deposited acrylic acid surfaces for cell culture applications. Biomaterials 2005, 26, 3831–3841. [Google Scholar] [CrossRef] [PubMed]
- Daw, R.; Candan, S.; Beck, A.J.; Devlin, A.J.; Brook, I.M.; MacNeil, S.; Dawson, R.A.; Short, R.D. Plasma copolymer surfaces of acrylic acid/1,7 octadiene: Surface characterisation and the attachment of ROS 17/2.8 osteoblast-like cells. Biomaterials 1998, 19, 1717–1725. [Google Scholar] [CrossRef]
- Ertel, S.I.; Chilkoti, A.; Horbetti, T.A.; Ratner, B.D. Endothelial cell growth on oxygen-containing films deposited by radio-frequency plasmas: The role of surface carbonyl groups. J. Biomater. Sci. Polym. Ed. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- Ameen, A.P.; Short, R.D.; Ward, R. The formation of high surface concentrations of hydroxyl groups in the plasma polymerization of allyl alcohol. Polymer 1994, 35, 4382–4391. [Google Scholar] [CrossRef]
- Gancarz, I.; Bryjak, J.; Bryjak, M.; Poźniak, G.; Tylus, W. Plasma modified polymers as a support for enzyme immobilization 1.: Allyl alcohol plasma. Eur. Polym. J. 2003, 39, 1615–1622. [Google Scholar] [CrossRef]
- Fally, F.; Virlet, I.; Riga, J.; Verbist, J.J. Detailed multitechnique spectroscopic surface and bulk characterization of plasma polymers deposited from 1-propanol, allyl alcohol, and propargyl alcohol. J. Appl. Polym. Sci. 1996, 59, 1569–1584. [Google Scholar] [CrossRef]
- Shard, A.G.; Whittle, J.D.; Beck, A.J.; Brookes, P.N.; Bullett, N.A.; Talib, R.A.; Mistry, A.; Barton, D.; McArthur, S.L. A nexafs examination of unsaturation in plasma polymers of allylamine and propylamine. J. Phys. Chem. B 2004, 108, 12472–12480. [Google Scholar] [CrossRef]
- Hook, A.L.; Thissen, H.; Quinton, J.; Voelcker, N.H. Comparison of the binding mode of plasmid DNA to allylamine plasma polymer and poly (ethylene glycol) surfaces. Surf. Sci. 2008, 602, 1883–1891. [Google Scholar] [CrossRef]
- Harsch, A.; Calderon, J.; Timmons, R.; Gross, G. Pulsed plasma deposition of allylamine on polysiloxane: A stable surface for neuronal cell adhesion. J. Neurosci. Methods 2000, 98, 135–144. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Luo, R.; Li, X.; Chen, S.; Sun, H.; Huang, N. Improved hemocompatibility guided by pulsed plasma tailoring the surface amino functionalities of TiO2 coating for covalent immobilization of heparin. Plasma Process. Polym. 2011, 8, 850–858. [Google Scholar] [CrossRef]
- Thierry, B.; Jasieniak, M.; de Smet, L.C.; Vasilev, K.; Griesser, H.J. Reactive epoxy-functionalized thin films by a pulsed plasma polymerization process. Langmuir 2008, 24, 10187–10195. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.; Schofield, W.; Badyal, J. Multifunctional molecular scratchcards. Chem. Mater. 2007, 19, 1546–1551. [Google Scholar] [CrossRef]
- Choukourov, A.; Biederman, H.; Kholodkov, I.; Slavinska, D.; Trchova, M.; Hollander, A. Properties of amine-containing coatings prepared by plasma polymerization. J. Appl. Polym. Sci. 2004, 92, 979–990. [Google Scholar] [CrossRef]
- Fally, F.; Doneux, C.; Riga, J.; Verbist, J. Quantification of the functional groups present at the surface of plasma polymers deposited from propylamine, allylamine, and propargylamine. J. Appl. Polym. Sci. 1995, 56, 597–614. [Google Scholar] [CrossRef]
- Gancarz, I.; Bryjak, J.; Poźniak, G.; Tylus, W. Plasma modified polymers as a support for enzyme immobilization II. Amines plasma. Eur. Polym. J. 2003, 39, 2217–2224. [Google Scholar] [CrossRef]
- Gengenbach, T.R.; Chatelier, R.C.; Griesser, H.J. Characterization of the ageing of plasma-deposited polymer films: Global analysis of X-ray photoelectron spectroscopy data. Surf. Interface Anal. 1996, 24, 271–281. [Google Scholar] [CrossRef]
- Coad, B.R.; Jasieniak, M.; Griesser, S.S.; Griesser, H.J. Controlled covalent surface immobilisation of proteins and peptides using plasma methods. Surf. Coat. Technol. 2013, 233, 169–177. [Google Scholar] [CrossRef]
- Coad, B.R.; Vasilev, K.; Diener, K.R.; Hayball, J.D.; Short, R.D.; Griesser, H.J. Immobilized streptavidin gradients as bioconjugation platforms. Langmuir 2012, 28, 2710–2717. [Google Scholar] [CrossRef]
- Christo, S.N.; Sarvestani, G.T.; Griesser, S.S.; Coad, B.R.; Griesser, H.J.; Vasilev, K.; Brown, M.P.; Diener, K.R.; Hayball, J.D. Individual and population quantitative analyses of calcium flux in T-cells activated on functionalized material surfaces. Aust. J. Chem. 2012, 65, 45–49. [Google Scholar] [CrossRef]
- Kasparek, E.; Thiry, D.; Tavares, J.R.; Wertheimer, M.R.; Snyders, R.; Girard-Lauriault, P.-L. Growth mechanisms of sulfur-rich plasma polymers: Binary gas mixtures versus single precursor. Plasma Process. Polym. 2018, 15, 1800036. [Google Scholar] [CrossRef]
- Thiry, D.; Aparicio, F.J.; Britun, N.; Snyders, R. Concomitant effects of the substrate temperature and the plasma chemistry on the chemical properties of propanethiol plasma polymer prepared by ICP discharges. Surf. Coat. Technol. 2014, 241, 2–7. [Google Scholar] [CrossRef]
- Truica-Marasescu, F.; Wertheimer, M.R. Nitrogen-rich plasma-polymer films for biomedical applications. Plasma Process. Polym. 2008, 5, 44–57. [Google Scholar] [CrossRef]
- Vasilev, K. Nanoengineered plasma polymer films for biomaterial applications. Plasma Chem. Plasma Process. 2013, 34, 545–558. [Google Scholar] [CrossRef]
- Hegemann, D.; Indutnyi, I.; Zajíčková, L.; Makhneva, E.; Farka, Z.; Ushenin, Y.; Vandenbossche, M. Stable, nanometer-thick oxygen-containing plasma polymer films suited for enhanced biosensing. Plasma Process. Polym. 2018, 15, 1800090. [Google Scholar] [CrossRef]
- Harding, F.J.; Clements, L.R.; Short, R.D.; Thissen, H.; Voelcker, N.H. Assessing embryonic stem cell response to surface chemistry using plasma polymer gradients. Acta Biomater. 2012, 8, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.; Vasilev, K.; Fuente Mora, C.; Ranghini, E.; Tensaout, H.; Rak-Raszewska, A.; Wilm, B.; Edgar, D.; Short, R.D.; Kenny, S.E. The potential of small chemical functional groups for directing the differentiation of kidney stem cells. Biochem. Soc. Trans. 2010, 38, 1062–1066. [Google Scholar] [CrossRef] [PubMed]
- Bachhuka, A.; Delalat, B.; Ghaemi, S.R.; Gronthos, S.; Voelcker, N.H.; Vasilev, K. Nanotopography mediated osteogenic differentiation of human dental pulp derived stem cells. Nanoscale 2017, 9, 14248–14258. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Elkhooly, T.A.; Liu, X.; Cavallaro, A.; Taheri, S.; Vasilev, K.; Feng, Q. Silver nanoparticle based coatings enhance adipogenesis compared to osteogenesis in human mesenchymal stem cells through oxidative stress. J. Mater. Chem. B 2016, 4, 1466–1479. [Google Scholar] [CrossRef]
- Liu, X.; Shi, S.; Feng, Q.; Bachhuka, A.; He, W.; Huang, Q.; Zhang, R.; Yang, X.; Vasilev, K. Surface chemical gradient affects the differentiation of human adipose-derived stem cells via ERK1/2 signaling pathway. ACS Appl. Mater. Interfaces 2015, 7, 18473–18482. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Feng, Q.; Bachhuka, A.; Vasilev, K. Surface modification by allylamine plasma polymerization promotes osteogenic differentiation of human adipose-derived stem cells. ACS Appl. Mater. Interfaces 2014, 6, 9733–9741. [Google Scholar] [CrossRef]
- Bachhuka, A.; Hayball, J.; Smith, L.E.; Vasilev, K. Effect of surface chemical functionalities on collagen deposition by primary human dermal fibroblasts. ACS Appl. Mater. Interfaces 2015, 7, 23767–23775. [Google Scholar] [CrossRef] [PubMed]
- Delalat, B.; Mierczynska, A.; Ghaemi, S.R.; Cavallaro, A.; Harding, F.J.; Vasilev, K.; Voelcker, N.H. Materials displaying neural growth factor gradients and applications in neural differentiation of embryoid body cells. Adv. Funct. Mater. 2015, 25, 2737–2744. [Google Scholar] [CrossRef]
- Vasilev, K.; Mierczynska, A.; Hook, A.L.; Chan, J.; Voelcker, N.H.; Short, R.D. Creating gradients of two proteins by differential passive adsorption onto a peg-density gradient. Biomaterials 2010, 31, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Diener, K.R.; Christo, S.N.; Griesser, S.S.; Sarvestani, G.T.; Vasilev, K.; Griesser, H.J.; Hayball, J.D. Solid-state capture and real-time analysis of individual t cell activation via self-assembly of binding multimeric proteins on functionalized materials surfaces. Acta Biomater. 2012, 8, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Christo, S.N.; Diener, K.R.; Nordon, R.E.; Brown, M.P.; Griesser, H.J.; Vasilev, K.; Christo, F.C.; Hayball, J.D. Scrutinizing calcium flux oscillations in T lymphocytes to deduce the strength of stimulus. Sci. Rep. 2015, 5, 7760. [Google Scholar] [CrossRef] [PubMed]
- Goreham, R.V.; Short, R.D.; Vasilev, K. Method for the generation of surface-bound nanoparticle density gradients. J. Phys. Chem. C 2011, 115, 3429–3433. [Google Scholar] [CrossRef]
- Khaksar, M.; Jolley, D.F.; Sekine, R.; Vasilev, K.; Johannessen, B.; Donner, E.; Lombi, E. In situ chemical transformations of silver nanoparticles along the water-sediment continuum. Environ. Sci. Technol. 2015, 49, 318–325. [Google Scholar] [CrossRef]
- Sekine, R.; Khaksar, M.; Brunetti, G.; Donner, E.; Scheckel, K.G.; Lombi, E.; Vasilev, K. Surface immobilization of engineered nanomaterials for in situ study of their environmental transformations and fate. Environ. Sci. Technol. 2013, 47, 9308–9316. [Google Scholar] [CrossRef] [PubMed]
- Sekine, R.; Brunetti, G.; Donner, E.; Khaksar, M.; Vasilev, K.; Jämting, Å.K.; Scheckel, K.G.; Kappen, P.; Zhang, H.; Lombi, E. Speciation and lability of Ag-, AgCl-, and Ag2S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films. Environ. Sci. Technol. 2015, 49, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Visalakshan, R.M.; MacGregor, M.N.; Cavallaro, A.A.; Sasidharan, S.; Bachhuka, A.; Mierczynska-Vasilev, A.M.; Hayball, J.D.; Vasilev, K. Creating nano-engineered biomaterials with well-defined surface descriptors. ACS Appl. Nano Mater. 2018, 1, 2796–2807. [Google Scholar] [CrossRef]
- Taheri, S.; Ruiz, J.-C.; Michelmore, A.; MacGregor, M.N.; Foerch, R.; Majewski, P.J.; Vasilev, K. Binding of nanoparticles to aminated plasma polymer surfaces is controlled by primary amine density and solution PH. J. Phys. Chem. C 2018, 122, 14986–14995. [Google Scholar] [CrossRef]
- Christo, S.N.; Bachhuka, A.; Diener, K.R.; Mierczynska, A.; Hayball, J.D.; Vasilev, K. The role of surface nanotopography and chemistry on primary neutrophil and macrophage cellular responses. Adv. Healthc. Mater. 2016, 5, 956–965. [Google Scholar] [CrossRef]
- Christo, S.; Bachhuka, A.; Diener, K.R.; Vasilev, K.; Hayball, J.D. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry. Sci. Rep. 2016, 6, 26207. [Google Scholar] [CrossRef] [PubMed]
- Christo, S.N.; Diener, K.R.; Bachhuka, A.; Vasilev, K.; Hayball, J.D. Innate immunity and biomaterials at the nexus: Friends or foes. Biomed. Res. Int. 2015, 2015, 342304. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Bachhuka, A.; Wei, F.; Wang, X.; Liu, G.; Vasilev, K.; Xiao, Y. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. Nanoscale 2017, 9, 18129–18152. [Google Scholar] [CrossRef]
- Choukourov, A.; Kylián, O.; Petr, M.; Vaidulych, M.; Nikitin, D.; Hanuš, J.; Artemenko, A.; Shelemin, A.; Gordeev, I.; Kolská, Z.; et al. Rms roughness-independent tuning of surface wettability by tailoring silver nanoparticles with a fluorocarbon plasma polymer. Nanoscale 2017, 9, 2616–2625. [Google Scholar] [CrossRef]
- Kylián, O.; Polonskyi, O.; Kratochvíl, J.; Artemenko, A.; Choukourov, A.; Drábik, M.; Solař, P.; Slavínská, D.; Biederman, H. Control of wettability of plasma polymers by application of ti nano-clusters. Plasma Process. Polym. 2012, 9, 180–187. [Google Scholar] [CrossRef]
- Kuzminova, A.; Shelemin, A.; Kylián, O.; Petr, M.; Kratochvíl, J.; Solař, P.; Biederman, H. From super-hydrophilic to super-hydrophobic surfaces using plasma polymerization combined with gas aggregation source of nanoparticles. Vacuum 2014, 110, 58–61. [Google Scholar] [CrossRef]
- Ramiasa-MacGregor, M.; Mierczynska, A.; Sedev, R.; Vasilev, K. Tuning and predicting the wetting of nanoengineered material surface. Nanoscale 2016, 8, 4635–4642. [Google Scholar] [CrossRef]
- Simovic, S.; Diener, K.R.; Bachhuka, A.; Kant, K.; Losic, D.; Hayball, J.D.; Brownc, M.P.; Vasilev, K. Controlled release and bioactivity of the monoclonal antibody rituximab from a porous matrix: A potential in situ therapeutic device. Mater. Lett. 2014, 130, 210–214. [Google Scholar] [CrossRef]
- Simovic, S.; Losic, D.; Vasilev, K. Controlled drug release from porous materials by plasma polymer deposition. Chem. Commun. 2010, 46, 1317–1319. [Google Scholar] [CrossRef] [PubMed]
- Vasilev, K.; Poulter, N.; Martinek, P.; Griesser, H.J. Controlled release of levofloxacin sandwiched between two plasma polymerized layers on a solid carrier. ACS Appl. Mater. Interfaces 2011, 3, 4831–4836. [Google Scholar] [CrossRef] [PubMed]
- Bazaka, K.; Jacob, M.V.; Crawford, R.J.; Ivanova, E.P. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 2011, 7, 2015–2028. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M.; Chrzanowski, W.; Ostrikov, K. Anti-bacterial surfaces: Natural agents, mechanisms of action, and plasma surface modification. Rsc Adv. 2015, 5, 48739–48759. [Google Scholar] [CrossRef]
- Vasilev, K.; Griesser, S.S.; Griesser, H.J. Antibacterial surfaces and coatings produced by plasma techniques. Plasma Process. Polym. 2011, 8, 1010–1023. [Google Scholar] [CrossRef]
- Cavallaro, A.; Taheri, S.; Vasilev, K. Responsive and “smart” antibacterial surfaces: Common approaches and new developments (review). Biointerphases 2014, 9, 029005. [Google Scholar] [CrossRef]
- Vasilev, K.; Cook, J.; Griesser, H.J. Antibacterial surfaces for biomedical devices. Expert Rev. Med. Devices 2009, 6, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, A.; Majewski, P.; Barton, M.; Vasilev, K. Substrate independent approach for immobilisation of quaternary ammonium compounds to surfaces to reduce bio-burden. Mater. Sci. Forum 2014, 783, 1389–1395. [Google Scholar] [CrossRef]
- Al-Bataineh, S.A.; Jasieniak, M.; Britcher, L.G.; Griesser, H.J. TOF-SIMS and principal component analysis characterization of the multilayer surface grafting of small molecules: Antibacterial furanones. Anal. Chem. 2008, 80, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Ostrikov, K.; Macgregor-Ramiasa, M.; Cavallaro, A.; Ostrikov, K.K.; Vasilev, K. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss. J. Phys. D Appl. Phys. 2016, 49, 304001. [Google Scholar] [CrossRef]
- Jiann, S.; Srikanth, R.; Fu-Hsiang, K.; Kostya, O. Plasma-made silicon nanograss and related nanostructures. J. Phys. D Appl. Phys. 2011, 44, 174010. [Google Scholar]
- Simovic, S.; Losic, D.; Vasilev, K. Controlled release from drug delivery systems based on porous platforms. Pharm. Technol. 2011, 35, 68–71. [Google Scholar]
- Taheri, S.; Cavallaro, A.; Christo, S.N.; Majewski, P.; Barton, M.; Hayball, J.D.; Vasilev, K. Antibacterial plasma polymer films conjugated with phospholipid encapsulated silver nanoparticles. ACS Biomater. Sci. Eng. 2015, 1, 1278–1286. [Google Scholar] [CrossRef]
- Taheri, S.; Cavallaro, A.; Christo, S.N.; Smith, L.E.; Majewski, P.; Barton, M.; Hayball, J.D.; Vasilev, K. Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials 2014, 35, 4601–4609. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Cavallaro, A.; Barton, M.; Whittle, J.; Majewski, P.; Smith, L.; Vasilev, K. Antibacterial efficacy and cytotoxicity of silver nanoparticle based coatings facilitated by a plasma polymer interlayer. Plasma Med. 2014, 4, 101–115. [Google Scholar] [CrossRef]
- Taheri, S.; Baier, G.; Majewski, P.; Barton, M.; Forch, R.; Landfester, K.; Vasilev, K. Synthesis and surface immobilization of antibacterial hybrid silver-poly(l-lactide) nanoparticles. Nanotechnology 2014, 25, 305102. [Google Scholar] [CrossRef] [PubMed]
- Vasilev, K.; Sah, V.R.; Goreham, R.V.; Ndi, C.; Short, R.D.; Griesser, H.J. Antibacterial surfaces by adsorptive binding of polyvinyl-sulphonate-stabilized silver nanoparticles. Nanotechnology 2010, 21, 215102. [Google Scholar] [CrossRef]
- Vasilev, K.; Ramiasa-Macgregor, M. Nanoengineered plasma polymer films for biomedical applications. Adv. Mater. Lett. 2018, 9, 42–52. [Google Scholar] [CrossRef]
- Michl, T.; Barz, J.; Giles, C.; Haupt, M.; Henze, J.H.; Mayer, J.; Futrega, K.; Doran, M.R.; Oehr, C.; Vasilev, K.; et al. Plasma polymerization of TEMPO yields coatings containing stable nitroxide radicals for controlling interactions with prokaryotic and eukaryotic cells. ACS Appl. Nano Mater. 2018, 1, 6587–6595. [Google Scholar] [CrossRef]
- Kafshgari, M.H.; Delalat, B.; Harding, F.; Cavallaro, A.; Mäkilä, E.; Salonen, J.; Vasilev, K.; Voelcker, N. Antibacterial properties of nitric oxide-releasing porous silicon nanoparticles. J. Mater. Chem. B 2016, 4, 2051–2058. [Google Scholar] [CrossRef]
- Kafshgari, M.H.; Cavallaro, A.; Delalat, B.; Harding, F.J.; McInnes, S.J.; Mäkilä, E.; Salonen, J.; Vasilev, K.; Voelcker, N.H. Nitric oxide-releasing porous silicon nanoparticles. Nanoscale Res. Lett. 2014, 9, 333. [Google Scholar] [CrossRef] [PubMed]
- Vasilev, K.; Britcher, L.; Casanal, A.; Griesser, H.J. Solvent-induced porosity in ultrathin amine plasma polymer coatings. J. Phys. Chem. B 2008, 112, 10915–10921. [Google Scholar] [CrossRef] [PubMed]
- MacGregor-Ramiasa, M.N.; Cavallaro, A.A.; Visalakshan, R.M.; Gonzalez, L.; Vasilev, K. Plasma deposited polyoxazoline coatings, a versatile new class of biomaterials. In CHEMECA 2016: Chemical Engineering—Regeneration, Recovery and Reinvention; Engineers Australia: Adelaide, SA, Australia, 2016; pp. 302–3012. [Google Scholar]
- Griesser, H.J. Small scale reactor for plasma processing of moving substrate web. Vacuum 1989, 39, 485–488. [Google Scholar] [CrossRef]
- Bhatt, S.; Pulpytel, J.; Mirshahi, M.; Arefi-Khonsari, F. Cell resistant peptidomimetic poly (2-ethyl-2-oxazoline) coatings developed by low pressure inductively excited pulsed plasma polymerization for biomedical purpose. Plasma Process. Polym. 2015, 12, 519–532. [Google Scholar] [CrossRef]
- Zanini, S.; Zoia, L.; Dell’Orto, E.C.; Natalello, A.; Villa, A.M.; Pergola, R.D.; Riccardi, C. Plasma polymerized 2-ethyl-2-oxazoline: Chemical characterization and study of the reactivity towards different chemical groups. Mater. Des. 2016, 108, 791–800. [Google Scholar] [CrossRef]
- Dirk, H. Macroscopic investigation of reaction rates yielding plasma polymer deposition. J. Phys. D Appl. Phys. 2013, 46, 205204. [Google Scholar]
- Hegemann, D.; Michlíček, M.; Blanchard, N.E.; Schütz, U.; Lohmann, D.; Vandenbossche, M.; Zajíčková, L.; Drábik, M. Deposition of functional plasma polymers influenced by reactor geometry in capacitively coupled discharges. Plasma Process. Polym. 2016, 13, 279–286. [Google Scholar] [CrossRef]
- Gonzalez Garcia, L.E.; MacGregor-Ramiasa, M.; Visalakshan, R.M.; Vasilev, K. Protein interactions with nanoengineered polyoxazoline surfaces generated via plasma deposition. Langmuir 2017, 33, 7322–7331. [Google Scholar] [CrossRef]
- Ruoslahti, E.; Pierschbacher, M.D. New perspectives in cell adhesion: RGD and integrins. Science 1987, 238, 491–497. [Google Scholar] [CrossRef]
- Ratner, B.D. Plasma deposition for biomedical applications: A brief review. J. Biomater. Sci. Polym. Ed. 1993, 4, 3–11. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, J.W.; Lee, H.B. Cell adhesion and growth on polymer surfaces with hydroxyl groups prepared by water vapour plasma treatment. Biomaterials 1991, 12, 443–448. [Google Scholar] [CrossRef]
- Francesch, L.; Garreta, E.; Balcells, M.; Edelman, E.R.; Borrós, S. Fabrication of bioactive surfaces by plasma polymerization techniques using a novel acrylate-derived monomer. Plasma Process. Polym. 2005, 2, 605–611. [Google Scholar] [CrossRef]
- Detomaso, L.; Gristina, R.; d’Agostino, R.; Senesi, G.S.; Favia, P. Plasma deposited acrylic acid coatings: Surface characterization and attachment of 3T3 murine fibroblast cell lines. Surf. Coat. Technol. 2005, 200, 1022–1025. [Google Scholar] [CrossRef]
- Ruiz, J.-C.; Girard-Lauriault, P.-L.; Wertheimer, M.R. Fabrication, characterization, and comparison of oxygen-rich organic films deposited by plasma- and vacuum-ultraviolet (VUV) photo-polymerization. Plasma Process. Polym. 2015, 12, 225–236. [Google Scholar] [CrossRef]
- Lerouge, S.; Barrette, J.; Ruiz, J.-C.; Sbai, M.; Savoji, H.; Saoudi, B.; Gauthier, M.; Wertheimer, M.R. Nitrogen-rich plasma polymer coatings for biomedical applications: Stability, mechanical properties and adhesion under dry and wet conditions. Plasma Process. Polym. 2015, 12, 882–895. [Google Scholar] [CrossRef]
- Visalakshan, R.M.; Cavallaro, A.; Smith, L.E.; MacGregor-Ramiasa, M.; Hayball, J.; Vasilev, K. Downstream influences of oxazoline plasma polymerisation conditions on chemical and biological interactions. In Proceeding of CHEMECA 2016: Chemical Engineering—Regeneration, Recovery and Reinvention; Engineers Australia: Adelaide, SA, Australia, 2016; pp. 840–848. [Google Scholar]
- Zhu, T.; Vasilev, K.; Kreiter, M.; Mittler, S.; Knoll, W. Surface modification of citrate-reduced colloidal gold nanoparticles with 2-mercaptosuccinic acid. Langmuir 2003, 19, 9518–9525. [Google Scholar] [CrossRef]
- MacGregor, M.; Sinha, U.; Visalakshan, R.M.; Cavallaro, A.; Vasilev, K. Preserving the reactivity of coatings plasma deposited from oxazoline precursors—An in depth study. Plasma Process. Polym. 2018, e1800130. [Google Scholar] [CrossRef]
- Cavallaro, A.A.; Macgregor-Ramiasa, M.N.; Vasilev, K. Antibiofouling properties of plasma-deposited oxazoline-based thin films. ACS Appl. Mater. Interfaces 2016, 8, 6354–6362. [Google Scholar] [CrossRef]
- Macgregor-Ramiasa, M.; McNicholas, K.; Ostrikov, K.; Li, J.; Michael, M.; Gleadle, J.M.; Vasilev, K. A platform for selective immuno-capture of cancer cells from urine. Biosens. Bioelectron. 2017, 96, 373–380. [Google Scholar] [CrossRef]
- Ostrikov, K.; MacGregor-Ramiasa, M.N.; Vasilev, K. Biomaterial platform for cancer diagnostic from patient urine. In Proceeding of CHEMECA 2016: Chemical Engineering—Regeneration, Recovery and Reinvention; Engineers Australia: Adelaide, SA, Australia, 2016; p. 3405702. [Google Scholar]
- Bernard, L.; Rupper, P.; Faccio, G.; Hegemann, D.; Scholder, O.; Heuberger, M.; Maniura-Weber, K.; Vandenbossche, M. Plasma polymer film designs through the eyes of TOF-SIMS. Biointerphases 2018, 13, 03B417. [Google Scholar] [CrossRef]
Precursor | Chemical Formula | Surface Functionality | Ref. |
---|---|---|---|
Acrylic acid | carboxyl | [55,56,57] | |
Allylalcohol | hydroxyl | [58,59,60] | |
Ethanlol | |||
Allylamine | Amine, amide | [61,62,63,64] | |
Allylglycidyl ether | Epoxy | [65,66] | |
Glycidyl methacrylate | |||
Alkyloxazoline | Oxazoline, amine, amide | [41,42] | |
Ethylene diamine | Amine, amide | [67,68,69,70] | |
Alkylamine | |||
Propanal | Aldehyde | [40,71,72,73] | |
1,7-octadiene | Alkyl | [56] | |
perfluoroocatane | Fluoro | [34] | |
Propanethiol | Thiol | [74,75] |
Reactor and Deposition Parameters | Zanini et al. | Vasilev et al. |
---|---|---|
Vacuum chamber | Stainless steel | Glass |
Chamber Diameter, cm | 30 | 15 |
Electrode | Stainless steel | Brass |
Electrode Diameter, cm | 15 | 10 |
Separation Distance, cm | 4 | 10 |
Monomer input | Showerhead, 2 mm pinholes | Single inlet, 5 mm |
Radio frequency, MHz | 13.56 | 13.56 |
Base pressure, Pa | 10−3 | 10−1 |
Working pressure, Pa | 6 | 1–3 |
Power range, W | 4–80 | 10–50 |
Deposition time, min | 10–30 | 1–7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macgregor, M.; Vasilev, K. Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines. Materials 2019, 12, 191. https://doi.org/10.3390/ma12010191
Macgregor M, Vasilev K. Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines. Materials. 2019; 12(1):191. https://doi.org/10.3390/ma12010191
Chicago/Turabian StyleMacgregor, Melanie, and Krasimir Vasilev. 2019. "Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines" Materials 12, no. 1: 191. https://doi.org/10.3390/ma12010191
APA StyleMacgregor, M., & Vasilev, K. (2019). Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines. Materials, 12(1), 191. https://doi.org/10.3390/ma12010191