Facile Fabrication of Amorphous Photonic Structures with Non-Iridescent and Highly-Stable Structural Color on Textile Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Organically Modified SiO2 Nanospheres
2.2.1. Synthesis of Monodisperse SiO2 Nanospheres
2.2.2. Alkylating of SiO2 Nanospheres
2.2.3. Fluorinating of SiO2 Nanospheres
2.3. Preparation of P(MMA-BA) Copolymer Nanoparticles
2.4. Spray-Coating of APSs with Stable Structural Color on Textile Substrates
2.5. Characterization
3. Results and Discussion
3.1. Characterization of the Organically Modified SiO2 Nanospheres
3.2. Non-Iridescent Structural Color of the as-Prepared Fabrics
3.3. Stability of the Assembled Physical Structures on Fabric Substrates
3.4. Stability in the Refractive Index of the APSs
4. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shang, L.; Gu, Z.; Zhao, Y. Structural color materials in evolution. Mater. Today 2016, 19, 420–421. [Google Scholar] [CrossRef]
- Sato, O.; Kubo, S.; Gu, Z.Z. Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Acc. Chem. Res. 2009, 42, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dumanli, A.G.; Savin, T. Recent advances in the biomimicry of structural colours. Chem. Soc. Rev. 2016, 45, 6698. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Shim, T.S.; Hwang, H.; Yang, S.M.; Kim, S.H. Colloidal photonic crystals toward structural color palettes for security materials. Chem. Mater. 2013, 25, 2684–2690. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, F.; Umair, M.M.; Ju, B.; Zhang, S.; Tang, B. Patterned and iridescent plastics with 3D inverse opal structure for anticounterfeiting of the banknotes. Adv. Opt. Mater. 2018, 6, 1701351. [Google Scholar] [CrossRef]
- Marc, E.; Lydia, B.; Rudolf, Z.; Klaus, T.; Peter, F.; Oliver, R.; Martin, W. Artificial opals as effect pigments in clear-coatings. Macromol. Mater. Eng. 2004, 289, 158–163. [Google Scholar]
- Takeoka, Y. Angle-independent structural coloured amorphous arrays. J. Mater. Chem. 2012, 22, 23299–23309. [Google Scholar] [CrossRef]
- Hsiung, B.K.; Siddique, R.H.; Jiang, L.; Liu, Y.; Lu, Y.; Shawkey, M.D.; Blackledge, T.A. Tarantula-inspired noniridescent photonics with long-range order. Adv. Opt. Mater. 2017, 5, 1600599. [Google Scholar] [CrossRef]
- Chung, K.; Yu, S.; Heo, C.J.; Shim, J.W.; Yang, S.M.; Han, M.G.; Lee, H.S.; Jin, Y.; Lee, S.Y.; Park, N. Angle-independent reflectors: Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings. Adv. Mater. 2012, 24, 2366. [Google Scholar] [CrossRef]
- Harun-Ur-Rashid, M.; Bin, I.A.; Seki, T.; Ishii, M.; Nakamura, H.; Takeoka, Y. Angle-independent structural color in colloidal amorphous arrays. Chemphyschem 2010, 11, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, J.; Zhang, Z.; Xie, Z.; Du, X.; Gu, Z. Bio-inspired robust non-iridescent structural color with self-adhesive amorphous colloidal particle arrays. Nanoscale 2018, 10, 3673–3679. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.; Shen, H. Facile fabrication of crack-free photonic crystals with enhanced color contrast and low angle dependence. J. Mater. Chem. C 2017, 5, 8194–8200. [Google Scholar] [CrossRef]
- Ueno, K.; Inaba, A.; Sano, Y.; Kondoh, M.; Watanabe, M. A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours. Chem. Commun. 2009, 45, 3603–3605. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Sano, Y.; Inaba, A.; Kondoh, M.; Watanabe, M. Soft glassy colloidal arrays in an ionic liquid: colloidal glass transition, ionic transport, and structural color in relation to microstructure. J. Phys. Chem. B 2010, 114, 13095–13103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dong, B.; Chen, A.; Liu, X.; Shi, L.; Zi, J. Using cuttlefish ink as an additive to produce non-iridescent structural colors of high color visibility. Adv. Mater. 2015, 27, 4719–4724. [Google Scholar] [CrossRef] [PubMed]
- Forster, J.D.; Noh, H.; Liew, S.F.; Saranathan, V.; Schreck, C.F.; Yang, L.; Park, J.G.; Prum, R.O.; Mochrie, S.G.; O’Hern, C.S. Biomimetic isotropic nanostructures for structural coloration. Adv. Mater. 2009, 22, 2939–2944. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, A.; Kohri, M.; Morimoto, G.; Nannichi, Y.; Taniguchi, T.; Kishikawa, K. Full-color biomimetic photonic materials with iridescent and non-iridescent structural colors. Sci. Rep. 2016, 6, 33984. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ge, D.; Wu, G.; Liao, Z.; Yang, S. Production of structural colors with high contrast and wide viewing angles from assemblies of polypyrrole black coated polystyrene nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 16289–16295. [Google Scholar] [CrossRef] [PubMed]
- Ge, D.; Yang, X.; Chen, Z.; Yan, L.; Wu, G.; Xia, Y.; Yang, S. Colloidal inks from bumpy colloidal nanoparticles for the assembly of ultrasmooth and uniform structural colors. Nanoscale 2017, 9, 17357–17363. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.; Shen, H. Structurally colored films with superhydrophobicity and wide viewing angles based on bumpy melanin-like particles. Appl. Surf. Sci. 2017, 427, 1129–1136. [Google Scholar] [CrossRef]
- Meng, Y.; Tang, B.; Cui, J.; Wu, S.; Ju, B.; Zhang, S. Biomimetic construction of non-iridescent structural color films with high hydrophobicity and good mechanical stability induced by chaotic convective coassembly method. Adv. Mater. Interfaces 2016, 3, 1600374. [Google Scholar] [CrossRef]
- Katagiri, K.; Tanaka, Y.; Uemura, K.; Inumaru, K.; Seki, T.; Takeoka, Y. Structural color coating films composed of an amorphous array of colloidal particles via electrophoretic deposition. NPG Asia Mater. 2017, 9, 355. [Google Scholar] [CrossRef]
- Iwata, M.; Teshima, M.; Seki, T.; Yoshioka, S.; Takeoka, Y. Bio-inspired bright structurally colored colloidal amorphous array enhanced by controlling thickness and black background. Adv. Mater. 2017, 29, 1605050. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, B.; Su, X.; Zhang, S. Structural color patterns on paper fabricated by inkjet printer and their application in anticounterfeiting. J. Phys. Chem. Lett. 2017, 8, 2835–2841. [Google Scholar] [CrossRef] [PubMed]
- Ge, D.; Yang, L.; Wu, G.; Yang, S. Spray coating of superhydrophobic and angle-independent coloured films. Chem. Commun. 2014, 50, 2469–2472. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Shi, L.; You, B.; Wu, L.; Zhao, D. Large-scale fabrication of three-dimensional ordered polymer films with strong structure colors and robust mechanical properties. J. Mater. Chem. 2012, 22, 8069–8075. [Google Scholar] [CrossRef]
- Yi, B.; Shen, H. Liquid-immune structural colors with angle-independence inspired from hollow melanosomes. Chem. Commun. 2017, 53, 9234–9237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, F.; Wang, L.; Lin, Y.; Zhu, J. Brilliant structurally colored films with invariable stop-band and enhanced mechanical robustness inspired by the cobbled road. ACS Appl. Mater. Interfaces 2016, 8, 22585–22592. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Ding, C.; Li, Q.; Yuan, W.; Peng, Y.; Hu, J.; Zhang, K.Q. Rapid fabrication of robust, washable, self-healing superhydrophobic fabrics with non-iridescent structural color by facile spray coating. RSC Adv. 2017, 7, 8443–8452. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhang, X.; Zhang, L.; Cao, M.; Lin, Y.; Zhu, J. Rapid fabrication of angle-independent structurally colored films with a superhydrophobic property. Dyes Pigm. 2016, 130, 202–208. [Google Scholar] [CrossRef]
- Xu, L.; Karunakaran, R.G.; Guo, J.; Yang, S. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles. ACS Appl. Mater. Interfaces 2012, 4, 1118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shi, F.; Niu, J.; Jiang, Y.; Wang, Z. Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem. 2008, 18, 621–633. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, H.; Wang, H.; Zhao, Y.; Shao, H.; Xu, Z.; Feng, Z.; Liu, D.; Lin, T. Argon plasma treatment of fluorine-free silane coatings: A facile, environment-friendly method to prepare durable, superhydrophobic fabrics. Adv. Mater. Interfaces 2017, 4, 1700027. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Chai, L.; Wang, X.; Zhou, L.; Fan, Q.; Shao, J. Facile Fabrication of Amorphous Photonic Structures with Non-Iridescent and Highly-Stable Structural Color on Textile Substrates. Materials 2018, 11, 2500. https://doi.org/10.3390/ma11122500
Li Y, Chai L, Wang X, Zhou L, Fan Q, Shao J. Facile Fabrication of Amorphous Photonic Structures with Non-Iridescent and Highly-Stable Structural Color on Textile Substrates. Materials. 2018; 11(12):2500. https://doi.org/10.3390/ma11122500
Chicago/Turabian StyleLi, Yichen, Liqin Chai, Xiaohui Wang, Lan Zhou, Qinguo Fan, and Jianzhong Shao. 2018. "Facile Fabrication of Amorphous Photonic Structures with Non-Iridescent and Highly-Stable Structural Color on Textile Substrates" Materials 11, no. 12: 2500. https://doi.org/10.3390/ma11122500
APA StyleLi, Y., Chai, L., Wang, X., Zhou, L., Fan, Q., & Shao, J. (2018). Facile Fabrication of Amorphous Photonic Structures with Non-Iridescent and Highly-Stable Structural Color on Textile Substrates. Materials, 11(12), 2500. https://doi.org/10.3390/ma11122500