Influences of Thermal Treatment on the Dielectric Performances of Polystyrene Composites Reinforced by Graphene Nanoplatelets
Abstract
:1. Introduction
2. Experiments and Characterizations
2.1. Materials
2.2. Characterizations
3. Results and Discussion
3.1. The Morphology and Structure of G5
3.2. Dielectric Properties for PS/G5 Composites with Different Volume Fractions
3.3. Morphology for PS/G5-9%
3.4. Dynamic Mechanical Analysis for PS/G5-9%
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dang, Z.; Yuan, J.; Yao, S.; Liao, R. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 2013, 25, 6334–6365. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Shen, Y.; Zhang, S.; Zhang, Q. Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 2015, 45, 433–458. [Google Scholar] [CrossRef]
- Dang, Z.; Zheng, M.; Zha, J. 1D/2D Carbon Nanomaterial–Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications. Small 2016, 12, 1688–1701. [Google Scholar] [CrossRef] [PubMed]
- Nan, C.; Shen, Y.; Ma, J. Physical properties of composites near percolation. Annu. Rev. Mater. Res. 2010, 40, 131–151. [Google Scholar] [CrossRef]
- Huang, M.; Tunnicliffe, L.B.; Zhuang, J.; Ren, W.; Yan, H.; Busfield, J.J.C. Strain-dependent dielectric behavior of carbon black reinforced natural rubber. Macromoleular 2016, 49, 2339–2347. [Google Scholar] [CrossRef]
- Yuan, J.; Luna, A.; Neri, W.; Zakri, C.; Schilling, T.; Colin, A.; Poulin, P. Graphene liquid crystal retarded percolation for new high-k materials. Nat. Commun. 2015, 6, 8700. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Lin, Y.; Nan, C. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv. Funct. Mater. 2007, 17, 2405–2410. [Google Scholar] [CrossRef]
- Wang, B.; Liang, G.; Jiao, Y.; Gu, A.; Liu, L.; Yuan, L.; Zhang, W. Two-layer materials of polyethylene and a carbon nanotube/cyanate ester composite with high dielectric constant and extremely low dielectric loss. Carbon 2013, 54, 224–233. [Google Scholar] [CrossRef]
- Deng, H.; Lin, L.; Ji, M.; Zhang, S.; Yang, M.; Fu, Q. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Mater. Sci. 2014, 39, 4. [Google Scholar] [CrossRef]
- Dang, Z.; Yuan, J.; Zha, J.; Zhou, T.; Li, S.; Hu, G. Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater. Sci. 2012, 74, 4. [Google Scholar] [CrossRef]
- Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Alig, I.; Potschke, P.; Lellinger, D.; Skipa, T.; Pegel, S.; Kasaliwal, G.R.; Villmow, T. Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 2012, 53, 4–28. [Google Scholar] [CrossRef]
- Alig, I.; Lellinger, D.; Dudkin, S.M.; Potschke, P. Conductivity spectroscopy on melt processed polypropylene-multiwalled carbon nanotube composites: Recovery after shear and crystallization. Polymer 2007, 48, 1020–1029. [Google Scholar] [CrossRef]
- Pegel, S.; Potschke, P.; Petzold, G.; Alig, I.; Dudkin, S.M.; Lellinger, D. Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 2008, 49, 4. [Google Scholar] [CrossRef]
- Villmow, T.; Pegel, S.; Potschke, P.; Wagenknecht, U. Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Compos. Sci. Technol. 2008, 68, 3. [Google Scholar] [CrossRef]
- Fan, B.; Bai, J. Composites of hybrids BaTiO3/carbon nanotubes/polyvinylidene fluoride with high dielectric properties. J. Phys. D Appl. Phys. 2015, 48, 455303. [Google Scholar] [CrossRef]
- Fan, B.; Bedoui, F.; Weigand, S.; Bai, J. Conductive network and β polymorph content evolution caused by thermal treatment in carbon nanotubes-BaTiO3 hybrids reinforced polyvinylidene fluoride composites. J. Phys. Chem. C 2016, 120, 9511–9519. [Google Scholar] [CrossRef]
- Fan, B.; He, D.; Liu, Y.; Bai, J. Influence of thermal treatments on the evolution of conductive paths in carbon nanotube-Al2O3 hybrid reinforced epoxy composites. Langmuir 2016. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, T.K.; Ayswarya, E.P.; Abraham, B.T.; Begum, S.P.M.; Thachil, E.T. Fabrication of partially exfoliated and disordered intercalated cloisite epoxy nanocomposites via in situ polymerization: Mechanical, dynamic mechanical, thermal and barrier properties. Appl. Clay Sci. 2014, 102, 220–230. [Google Scholar] [CrossRef]
- Natarajan, B.; Li, Y.; Deng, H.; Brinson, L.C.; Schadler, L.S. Effect of interfacial energetic on dispersion and glass transition temperature in polymer nanocomposites. Macromolecular 2013, 46, 2833–2841. [Google Scholar] [CrossRef]
- Liu, Y.; Hamon, A.L.; Haghi-Ashtiani, P.; Reiss, T.; Fan, B.; He, D.; Bai, J. Quantitative Study of Interface/Interphase in Epoxy/Graphene-Based Nanocomposites by Combining STEM and EELS. ACS Appl. Mater. Interfaces 2016, 8, 34151–34158. [Google Scholar] [CrossRef] [PubMed]
- Cançado, L.G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y.A.; Mizusaki, H.; Jorio, A.; Coelho, L.N.; Magalhães-Paniago, R.; Pimenta, M.A. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. [Google Scholar] [CrossRef]
- Lewis, T.J. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 739–753. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Libassi, A.; Tanner, B.K.; Stolojan, V.; Yuan, J.; Brown, L.M.; Rodil, S.E.; Kleinsorge, B.; Robertson, J. Density, sp3 Fraction, and Cross-Sectional Structure of Amorphous Carbon Films Determined by X-ray Reflectivity and Electron Energy-Loss Spectroscopy. Phys. Rev. B 2000, 621, 11089–11103. [Google Scholar] [CrossRef]
- Wu, Q.; Li, M.; Gu, Y.; Li, Y.; Zhang, Z. Nano-analysis on the structure and chemical composition of the interphase region in carbon fiber composite. Compos. Part A 2014, 56, 143–149. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, B.; Liu, Y.; He, D.; Bai, J. Influences of Thermal Treatment on the Dielectric Performances of Polystyrene Composites Reinforced by Graphene Nanoplatelets. Materials 2017, 10, 838. https://doi.org/10.3390/ma10070838
Fan B, Liu Y, He D, Bai J. Influences of Thermal Treatment on the Dielectric Performances of Polystyrene Composites Reinforced by Graphene Nanoplatelets. Materials. 2017; 10(7):838. https://doi.org/10.3390/ma10070838
Chicago/Turabian StyleFan, Benhui, Yu Liu, Delong He, and Jinbo Bai. 2017. "Influences of Thermal Treatment on the Dielectric Performances of Polystyrene Composites Reinforced by Graphene Nanoplatelets" Materials 10, no. 7: 838. https://doi.org/10.3390/ma10070838
APA StyleFan, B., Liu, Y., He, D., & Bai, J. (2017). Influences of Thermal Treatment on the Dielectric Performances of Polystyrene Composites Reinforced by Graphene Nanoplatelets. Materials, 10(7), 838. https://doi.org/10.3390/ma10070838