Structure and Photocatalytic Properties of Mn-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber Composites
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Samples
2.3. Measurements
2.3.1. Scanning Electron Microscopy Analysis
2.3.2. XRD Analysis
2.3.3. FT-IR Analysis
2.3.4. Specific Surface Area and Aperture Analysis
2.3.5. Photocatalysis Performance Test
3. Results and Discussion
3.1. Morphological Characteristics
3.2. XRD Analysis
3.3. FTIR Spectroscopy
3.4. Specific Surface Area, Pore Volume and Aperture Analysis
3.5. UV–Vis Analysis
3.6. Visible Photodegradation of Methylene Blue Solution
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chou, C.S.; Guo, M.G.; Liu, K.H.; Chen, Y.S. Preparation of TiO2 particles and their applications in the light scattering layer of a dye-sensitized solar cell. Appl. Energy 2012, 92, 224–233. [Google Scholar] [CrossRef]
- Inagaki, M.; Hirose, Y.; Matsunaga, T.; Tsumura, T.; Toyoda, M. Carbon coatings of anatase-type TiO2 through their precipitation in PVA aqueous solution. Carbon 2003, 4, 2619–2624. [Google Scholar] [CrossRef]
- Rodrigues, S.; Ranjit, K.T.; Uma, S.; Martyanov, I.N.; Klabunde, K.J. Single-step synthesis of a highly active visible-light photocatalyst for oxidation of a common indoor air pollutant: Acetaldehyde. Adv. Mater. 2005, 17, 2467–2471. [Google Scholar] [CrossRef]
- Mills, A.; Elliott, N.; Hill, G.; Fallis, D.; Durrant, J.R.; Willis, R.L. Preparation and characterization of novel thick sol–gel titania film photocatalysts. Photochem. Photobiol. Sci. 2003, 2, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121, 11459–11467. [Google Scholar] [CrossRef]
- Dong, M.J.; In, H.K.; El, L.K.; Chan, S.J.; Hyung, S.L.; Kidong, P.; Jeunghee, P. Transition-Metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution. J. Phys. Chem. C 2015, 119, 1921–1927. [Google Scholar]
- Muggli, D.S.; Ding, L.F. Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics. Appl. Catal. B Environ. 2001, 32, 181–194. [Google Scholar] [CrossRef]
- Zhao, W.X.; Bai, Z.P.; Ren, A.L.; Guo, B.; Wu, C. Sunlight photocatalytic activity of CdS modified TiO2 loaded on activated carbon fibers. Appl. Surf. Sci. 2010, 256, 3493–3498. [Google Scholar] [CrossRef]
- Onsuratoom, S.; Chavadej, S.; Screethawong, T. Hydrogen production from water splitting under UV light irradiation over Ag-loaded mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystal photocatalysts. Int. J. Hydrog. Energy 2011, 36, 5246–5261. [Google Scholar] [CrossRef]
- Wang, Y.D.; Chen, T.; Mu, Q.Y. Electrochemical performance of W-doped anatase TiO2 nanoparticles as an electrode material for lithium-ion batteries. J. Mater. Chem. 2011, 21, 6006–6013. [Google Scholar] [CrossRef]
- Choi, W.; Termin, A.; Hoffmann, M.R. The role of metal-ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994, 98, 13669–13679. [Google Scholar] [CrossRef]
- Xin, B.F.; Ren, Z.Y.; Wang, P.; Liu, J.; Jing, L.Q.; Fu, H.G. Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+–TiO2 photocatalysts. Appl. Surf. Sci. 2007, 253, 4390–4395. [Google Scholar] [CrossRef]
- Cao, J.L.; Wu, Z.C.; Cao, F.H.; Zhang, J.Q. Cathodic Coelectro deposition of Fe3+-doped TiO2 thin films and their photocatalytic activity under visible light. J. Inorg. Mater. 2007, 22, 514–518. [Google Scholar]
- Van Grieken, R.; Marugan, J.; Sordo, C.; Martinez, P.; Pablos, C. Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2. Appl. Catal. B Environ. 2009, 93, 112–118. [Google Scholar] [CrossRef]
- Ko, S. Photochemical synthesis, characterization and enhanced visible light induced photocatalysis of Ag Modified TiO2 Nanocatalyst. J. Nanosci. Nanotechnol. 2014, 14, 6293–6298. [Google Scholar] [CrossRef]
- Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalys. Int. J. Hydrog. Energy 2009, 34, 5337–5346. [Google Scholar] [CrossRef]
- Osei, P.B.; Lu, X.M.; Xie, J.M.; Jiang, D.L.; Chen, M.; Wei, X.J. Synthesis, characterisation and application of copper modyfied brookite titania photocatalyst activated by visible light. J. Nanosci. Nanotechnol. 2014, 14, 7045–7053. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.Y.; Han, C.H. A study on the band gap and the doping level of V-doped TiO2 with respect to the visible-light photocatalytic activity. J. Nanosci. Nanotechnol. 2014, 14, 8070–8073. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, F.; Zhu, J.; Yu, L.; Liu, X. Preparation of highly developed mesoporous activated carbon fiber from liquefied wood using wood charcoal as additive and its adsorption of methylene blue from solution. Bioresour. Technol. 2014, 164, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ma, X.; Zhu, L.; Li, D. Photocatalysis, microstructure and surface characterization of TiO2 loaded wooden activated carbon fibers. Polym. Compos. 2015, 36, 62–68. [Google Scholar] [CrossRef]
- Li, D.; Ma, X.; Liu, X.; Yu, L. Preparation and characterization of Nano-TiO2 loaded bamboo-based activated carbon fibers by H2O activation. BioResources 2014, 9, 602–612. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, G. Effect of TiO2 content on the microstructure and antibacterial activity of TiO2-loaded activated carbon fibers derived from liquefied wood. Surf. Interface Anal. 2015, 47, 931–937. [Google Scholar] [CrossRef]
- Mo, D.Q.; Ye, D.Q. Surface study of composite photocatalyst based on plasma modified activated carbon fibers with TiO2. Surf. Coat. Technol. 2009, 203, 1154–1160. [Google Scholar] [CrossRef]
- Ma, X.; Yang, H.; Yu, L.; Chen, Y.; Li, Y. Preparation, surface and pore structure of high surface area activated carbon fibers from bamboo by steam activation. Materials 2014, 7, 4431–4441. [Google Scholar] [CrossRef]
- Momeni, M.M.; Hakimian, M.; Kazempour, A. Preparation and characterisation of manganese-TiO2 nanocomposites for solar water splitting. Surf. Eng. 2016, 32, 514–519. [Google Scholar] [CrossRef]
- Shu, Y.; Hyun-il, K.; Won-Chun, O. Quantitative photocatalytic activity under visible light with Mn-ACF/TiO2. J. Korean Ceram. Soc. 2016, 53, 343–348. [Google Scholar]
- Jensen, H.; Soloviev, A.; Li, Z.; Sogaard, E.G. XPS and FTIR investigation of the surface properties of different prepared titania nano-powders. Appl. Surf. Sci. 2005, 236, 239–249. [Google Scholar] [CrossRef]
- Binas, V.D.; Sambani, K.; Maggos, T.; Katsanaki, A.; Kiriakidis, G. Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light. Appl. Catal. B Environ. 2012, 113, 79–86. [Google Scholar] [CrossRef]
Samples | Ti–WACF | Mn/600Ti–WACF | Mn/300Ti–WACF | Mn/100Ti–WACF | Mn/50Ti–WACF |
---|---|---|---|---|---|
Average crystallite size | 36.4 | 25.4 | 26.6 | 27.8 | 27.5 |
Sample | SBET | Smicro | Smeso | Vtot | Vmicro | Vmeso | PMic a | PMe b | D c |
---|---|---|---|---|---|---|---|---|---|
(m2/g) | (m2/g) | (m2/g) | (cm3/g) | (cm3/g) | (cm3/g) | (%) | (%) | (nm) | |
WACF | 1802 | 1272 | 530 | 0.875 | 0.581 | 0.294 | 66.4 | 33.6 | 1.94 |
Ti–WACF | 1418 | 852 | 408 | 0.710 | 0.384 | 0.272 | 54.1 | 38.3 | 2.00 |
Mn/600Ti–WACF | 1160 | 764 | 309 | 0.602 | 0.348 | 0.230 | 57.8 | 38.2 | 2.08 |
Mn/300Ti–WACF | 980 | 691 | 205 | 0.477 | 0.317 | 0.137 | 66.5 | 28.7 | 1.95 |
Mn/100Ti–WACF | 1239 | 803 | 322 | 0.628 | 0.364 | 0.230 | 58.0 | 36.6 | 2.03 |
Mn/50Ti–WACF | 966 | 624 | 342 | 0.556 | 0.284 | 0.272 | 51.1 | 48.9 | 2.03 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Zhou, W.; Chen, Y. Structure and Photocatalytic Properties of Mn-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber Composites. Materials 2017, 10, 631. https://doi.org/10.3390/ma10060631
Ma X, Zhou W, Chen Y. Structure and Photocatalytic Properties of Mn-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber Composites. Materials. 2017; 10(6):631. https://doi.org/10.3390/ma10060631
Chicago/Turabian StyleMa, Xiaojun, Wanru Zhou, and Yin Chen. 2017. "Structure and Photocatalytic Properties of Mn-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber Composites" Materials 10, no. 6: 631. https://doi.org/10.3390/ma10060631
APA StyleMa, X., Zhou, W., & Chen, Y. (2017). Structure and Photocatalytic Properties of Mn-Doped TiO2 Loaded on Wood-Based Activated Carbon Fiber Composites. Materials, 10(6), 631. https://doi.org/10.3390/ma10060631