MultiObjective ThermoEconomic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery
Abstract
:1. Introduction
Reference  Objective Function  Cycle Architecture 

Hettiarachchi et al. [26] (2007)  Heat exchange area per unit power (m^{2}/kWe)  SCORC 
Cayer et al. [27] (2010)  Relative cost per unit power (€/kWe)  TCORC 
Shengjun et al. [28] (2011)  Levelized energy cost ($/kWh) Heat exchange area per unit power (m^{2}/kWe)  SCORC, TCORC 
Quoilin et al. [29] (2011)  Specific investment cost (€/kWe)  SCORC 
Wang et al. [17] (2012)  Linear combination of area per unit power (m^{2}/kWe) and heat recovery efficiency (%)  SCORC 
Wang et al. [30] (2013)  Heat exchange area per unit power (m^{2}/kWe)  SCORC 
Wang et al.^{ 1} [31] (2013)  Exergy efficiency (%) vs. total investment cost (€/kWe)  SCORC 
Lecompte et al. [32] (2013)  Specific investment cost (€/kWe)  SCORC 
Pierobon et al.^{ 1} [33] (2013)  Net present value (€) vs. volume (m^{3}) Volume (m^{3}) vs. thermal efficiency (%)  SCORC 
Astolfi et al. [34] (2013)  Plant total specific cost (k€/kW)  TCORC 
Shu et al. [35] (2014)  Net present value ($) Deprecated payback period (years) Heat exchange area per unit power (m^{2}/kWe)  SCORC TCORC 
Li et al. [36] (2014)  Electricity production cost ($/kWh)  SCORC ZM 
Li et al. [37] (2014)  Electricity production cost ($/kWh)  SCORC 
Muhammad et al. [38] (2014)  Specific investment cost ($/kW)  SCORC 
Nusiaputra et al. [39] (2014)  Specific investment cost ($/kW) Mean cash flow ($/year)  SCORC 
Li et al. [40] (2014)  Total area (m^{2}) Relative cost per unit power ($/W) Ratio heat exchanger cost tot total cost (%)  SCORC 
Toffolo et al. [41] (2014)  Specific investment cost ($/kW) Levelized cost of electricity ($/kWh)  SCORC TCORC 
Meinel et al. [42] (2014)  Specific costs per kilowatt hour (€/kWh)  SCORC 
Objective Function  Formula  Comments 

Min. specific area (SA)  $\frac{{C}_{inv}}{{A}_{total}}$ 

Min. specific investment cost (SIC)  $\frac{{C}_{inv}}{{\dot{W}}_{net}}$ 

Min. simple payback period (PB)  $\frac{{C}_{inv}}{R}$ 

Max. net present value (NPV) 
$$\sum}_{t=1}^{years}\frac{{R}_{t}}{{\left(1+r\right)}^{t}$$


Min. levelized cost of electricity (LCOE)  $\frac{{{\displaystyle \sum}}_{t=1}^{years}NPV\left({C}_{t,inv}+{C}_{t,fuel}+{C}_{t,OM}\right)}{{{\displaystyle \sum}}_{t=1}^{years}NPV\left({E}_{t,gen}\right)}$ 

2. Description of the Thermodynamic Cycles and Cases
2.1. Description Subcritical and Transcritical ORC
2.2. Case Definition
3. Model and Assumptions
3.1. Cycle Assumptions
Variable  Description  Value 

PP_{e}  Pinch point temperature difference evaporator (°C)  Optimized 
PP_{c}  Pinch point temperature difference condenser (°C)  Optimized 
T_{7}  Inlet temperature cooling fluid condenser (°C)  25 
T_{4}  Inlet temperature turbine (°C)  Optimized ^{1} 
p_{e}  Evaporation pressure (Pa)  Optimized ^{2} 
p_{c}  Condensation pressure (Pa)  Optimized 
ε_{turbine}  Isentropic efficiency turbine ()  0.7 
ε_{pumps}  Isentropic efficiency pumps ()  0.6 
ε_{generator}  Generator efficiency ()  0.98 
ΔT_{sub}  Temperature subcooling (°C)  3 
ΔT_{sup}  Temperature superheating (°C)  5 ^{2} 
3.2. Heat Exchanger Models
Variable  Description  Value 

${D}_{h}$  Hydraulic diameter (m)  0.0035 
$t$  Plate thickness (m)  0.0005 
$\mathrm{\beta}$  Chevron angle (°)  45 
$\mathrm{\lambda}$  Plate thermal conductivity (W/m/K)  13.56 
${p}_{co}$  Corrugation pitch (m)  0.007 
3.3. Cost Models
Component  B  K1  K2  K3  Valid Range 

Plate heat exchangers  Area (m^{2})  4.6656  −0.1557  0.1547  10–1000 (m^{2}) 
Turbine  Fluid power (kW)  2.2476  1.4965  −0.1618  100–1500 (kW) 
Pumps (centrifugal)  Shaft power (kW)  3.3892  0.0536  0.1538  1–300 (kW) 
Electrical motor pump  Shaft power (kW)  2.4604  1.4191  −0.1798  75–2600 (kW) 
Electrical generator [41]  Shaft power (kW)  ${C}_{PEC}^{0}=1850000\xb7{\left(P/11800\right)}^{0.94}$ 
Component  B1  B2  C1  C2  C3  F_{m}  F_{BM} 

Plate heat exchangers p (bar) < 19  0.96  1.21  0  0  0  1   
Turbine              3.5 
Pumps (centrifugal) 10 < p (bar) < 100  1.89  1.35  −0.3935  0.3957  −0.00226  1   
Pumps (centrifugal) p (bar) < 10  1.89  1.35  0  0  0  1   
Electrical motor pump              1.5 
Electrical generator [41]              1.5 
3.4. Working Fluid Selection
Variable  Uncertainty 

Density  0.1% (liquid phase, temperature <400 K and pressure <30 MPa) 0.2% (liquid phase, temperature >310 K and pressure >30 MPa) 1% (liquid phase, temperature <310 K and pressure >30 MPa) 1% (vapor phase, temperature >400 K) 
Vapor pressure  0.2% (temperature >250 K) 0.35% (temperature >370 K) 
Liquid phase heat capacity  5% 
3.5. Expander Considerations
4. Optimization Strategy
Variable  Description  Lower  Upper 

${G}_{\mathrm{c},\mathrm{wf}}$  Mass flux working fluid condenser (kg/m^{2}/s)  20  100 
${G}_{\mathrm{e},\mathrm{wf}}$  Mass flux working fluid evaporator (kg/m^{2}/s)  20, 100 ^{1}  50, 200 ^{1} 
$P{P}_{\mathrm{c}}$  Pinch point temperature difference condenser (°C)  3  10 
$P{P}_{e}$  Pinch point temperature difference evaporator (°C)  3  10 
${T}_{c}$  Liquid saturation temperature condenser (°C)  35  50 
${T}_{e}$ ^{2}  Liquid saturation temperature evaporator (°C)  100  148.5 
T_{7}^{1}  Turbine inlet temperature (°C)  150  175 
${N}_{e}$  Number of passes hot fluid side evaporator ()  1  3 
${N}_{c}$  Number of passes cold fluid side condenser ()  1  3 
Parameter  Value 

Generations  50 
Population size  120 
Crossover rate  0.8 
Migration rate  0.2 
Mutation type  Gaussian (shrink = 1, scale = 1) 
5. Results and Discussion
5.1. Pareto Fronts and Specific Investment Cost
Variable  Minimum SIC  Maximum Net Power Output  

SCORC  TCORC  SCORC  TCORC  
${\dot{W}}_{net}$ (kWe)  681.8  681.3  791.5  1040 
${\mathrm{\eta}}_{I}$ (%)  10.47  11.20  10.9  11.1 
$P{P}_{\mathrm{e}}$ (°C)  5.9  8.2  3  3 
$P{P}_{c}$ (°C)  8.0  7.0  3  3 
${T}_{e}$ (°C)  128.8    124.5   
${T}_{c}$ (°C)  41.1  39.85  35.2  37.0 
${T}_{4}$ (°C)  128.8  161.6  124.5  160.0 
${C}_{GR}$ (k€)  2805  3436  3725  8162 
$SIC$ (€/kWe)  4114  5044  4707  8137 
${A}_{e}$ (m^{2})  258  879  418  1205 
${A}_{c}$ (m^{2})  398  385  888  756 
${N}_{e}$ ()  2  2  2  2 
${N}_{c}$ ()  2  2  2  2 
${\dot{m}}_{e,hf}$ (kg/s)  28.58  26.7  28.9  40.52 
${\dot{m}}_{e,cf}$ (kg/s)  205.30  150  217  255 
${G}_{e,wf}$ (kg/s/m^{2})  91.0  187  70.3  175.0 
${G}_{c,wf}$ (kg/s/m^{2})  54.0  53.5  22.4  46.1 
5.2. Analysis of the Parameter Space
5.3. Turbine Performance Parameters
5.4. Distribution of the Costs
5.5. Financial Analysis and Decision Making
Parameter  Value 

ORC lifetime (y)  20 
discount rate (%)  6 
production hours (h/y)  8000 
price electricity (€/MWh)  69.6 
increase electricity price (%/y)  0.50 
maintenance cost (${C}_{maintenance}/{C}_{TM}$)  0.02 
Case  ${\dot{W}}_{net}$ (kW)  SIC (€/kWe)  NPV (k€)  Payback Time (y) 

Min. SIC SCORC  681.8  4114  1070  8.46 
Min. SIC TCORC  681.3  5044  284  10.70 
Max. NPV SCORC  731.3  4138  1126  8.52 
Max. NPV TCORC  681.3  5044  284  10.70 
6. Conclusions
Acknowledgments
Author Contributions
Nomenclature
A  heat transfer area (m^{2}) 
Bo  boiling number () 
C  cost (€) 
Cp  isobaric specific heat capacity (J/kg·K) 
${\overline{C}}_{p}$  mean isobaric specific heat capacity (h_{b}h_{w})/(T_{b}T_{w}) (J/kg·K) 
D_{h}  hydraulic diameter (m) 
F  LMTD correction factor 
F_{m}  material correction factor () 
F_{p}  pressure correction factor () 
f  friction factor () 
G  mass flux (kg/m^{2}·s) 
h  enthalpy (J/kg) 
I  number of segments () 
K  number of paths () 
k  thermal conductivity (W/m·K) 
ṁ  mass flow rate (kg/s) 
N  number of passes () 
Nu  Nusselt number () 
p  pressure (bar) 
p_{co}  corrugation pitch (m) 
Pr  Prandtl number () 
PP  pinch point temperature difference (°C) 
Q̇  heat transfer rate (W) 
R  yearly cash flow (€/y) 
r  discount rate () 
Re  Reynolds number 
SP  size parameter (m) 
T  temperature (°C) 
t  plate thickness (m) 
U  overall heat transfer coefficient (W/m^{2}/K) 
V̇  volume flow rate (m^{3}/s) 
v  specific volume (m^{3}/kg) 
VR  volume ratio () 
x  vapor fraction () 
Greek letters
α  heat transfer coefficient (W/m^{2}/K) 
β  chevron angle (°) 
γ  thermal conductivity plate (W/m/K) 
ε  isentropic efficiency () 
μ  dynamic viscosity (kg/m/s) 
Subscripts
b  bulk 
c  condenser 
cf  cooling fluid 
e  evaporator 
eq  equivalent 
hf  heat carrier 
in  inlet 
inv  investment 
out  outlet 
sub  subcooled 
sup  superheated 
wl  wall 
wf  working fluid 
Abbreviations
BM  bare module 
CPCI  Chemical Engineering Plant Cost Index 
EES  Engineering Equation Solver 
GR  grass root 
LMTD  log mean temperature difference 
ORC  organic Rankine cycle 
PEC  purchased equipment cost 
SA  specific area (m^{2}/kW) 
SCORC  subcritical organic Rankine cycle 
SIC  specific investment cost (€/kW) 
TCORC  transcritical organic Rankine cycle 
TLC  triangular cycle 
TM  total module 
Conflicts of Interest
References
 Bronicki, L. Short review of the long history of ORC power systems. In Proceedings of the ORC2013, Rotterdam, The Netherlands, 7–8 October 2013.
 Tchanche, B.F.; Pétrissans, M.; Papadakis, G. Heat resources and organic Rankine cycle machines. Renew. Sustain. Energy Rev. 2014, 39, 1185–1199. [Google Scholar]
 Quoilin, S.; Broek, M.V.D.; Declaye, S.; Dewallef, P.; Lemort, V. Technoeconomic survey of Organic Rankine Cycle (ORC) systems. Renew. Sustain. Energy Rev. 2013, 22, 168–186. [Google Scholar] [CrossRef]
 Tchanche, B.F.; Lambrinos, G.; Frangoudakis, A.; Papadakis, G. Lowgrade heat conversion into power using organic Rankine cycles–A review of various applications. Renew. Sustain. Energy Rev. 2011, 15, 3963–3979. [Google Scholar] [CrossRef]
 Lai, N.A.; Fischer, J. Efficiencies of power flash cycles. Energy 2012, 44, 1017–1027. [Google Scholar] [CrossRef]
 Fischer, J. Comparison of trilateral cycles and organic Rankine cycles. Energy 2011, 36, 6208–6219. [Google Scholar] [CrossRef]
 Smith, I.K. Development of the trilateral flash cycle system Part1: Fundamental considerations. Proc. Inst. Mech. Eng. Part A J. Power Energy 1993, 207, 179–194. [Google Scholar] [CrossRef]
 Heberle, F.; Preißinger, M.; Brüggemann, D. Zeotropic mixtures as working fluids in Organic Rankine Cycles for lowenthalpy geothermal resources. Renew. Energy 2012, 37, 364–370. [Google Scholar] [CrossRef]
 Lecompte, S.; Ameel, B.; Ziviani, D.; van den Broek, M.; de Paepe, M. Exergy analysis of zeotropic mixtures as working fluids in Organic Rankine Cycles. Energy Convers. Manag. 2014, 85, 727–739. [Google Scholar] [CrossRef]
 Chys, M.; van den Broek, M.; Vanslambrouck, B.; Paepe, M.D. Potential of zeotropic mixtures as working fluids in organic Rankine cycles. Energy 2012, 44, 623–632. [Google Scholar] [CrossRef]
 Stijepovic, M.Z.; Papadopoulos, A.I.; Linke, P.; Grujic, A.S.; Seferlis, P. An exergy composite curves approach for the design of optimum multipressure organic Rankine cycle processes. Energy 2014, 69, 285–298. [Google Scholar] [CrossRef]
 Gnutek, Z.; BryszewskaMazurek, A. The thermodynamic analysis of multicycle ORC engine. Energy 2001, 26, 1075–1082. [Google Scholar] [CrossRef]
 Angelino, G.; Colonna, P. Multicomponent working fluids for organic Rankine cycles (ORCs). Energy 1998, 23, 449–463. [Google Scholar] [CrossRef]
 Saleh, B.; Koglbauer, G.; Wendland, M.; Fischer, J. Working fluids for lowtemperature organic Rankine cycles. Energy 2007, 32, 1210–1221. [Google Scholar] [CrossRef]
 Schuster, A.; Karellas, S.; Aumann, R. Efficiency optimization potential in supercritical Organic Rankine Cycles. Energy 2010, 35, 1033–1039. [Google Scholar] [CrossRef]
 Karellas, S.; Schuster, A.; Leontaritis, A.D. Influence of supercritical ORC parameters on plate heat exchanger design. Appl. Therm. Eng. 2012, 33–34, 70–76. [Google Scholar]
 Wang, Z.Q.; Zhou, N.J.; Guo, J.; Wang, X.Y. Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat. Energy 2012, 40, 107–115. [Google Scholar] [CrossRef]
 Yamada, N.; Mohamad, M.N.A.; Kien, T.T. Study on thermal efficiency of low to mediumtemperature organic Rankine cycles using HFO−1234yf. Renew. Energy 2012, 41, 368–375. [Google Scholar] [CrossRef]
 Liu, B.T.; Chien, K.H.; Wang, C.C. Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 2004, 29, 1207–1217. [Google Scholar] [CrossRef]
 Dai, Y.; Wang, J.; Gao, L. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Convers. Manag. 2009, 50, 576–582. [Google Scholar] [CrossRef]
 Hung, T.C.; Wang, S.K.; Kuo, C.H.; Pei, B.S.; Tsai, K.F. A study of organic working fluids on system efficiency of an ORC using lowgrade energy sources. Energy 2010, 35, 1403–1411. [Google Scholar] [CrossRef]
 Chen, H.; Goswami, D.Y.; Stefanakos, E.K. A review of thermodynamic cycles and working fluids for the conversion of lowgrade heat. Renew. Sustain. Energy Rev. 2010, 14, 3059–3067. [Google Scholar] [CrossRef]
 Ho, T.; Mao, S.S.; Greif, R. Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy. Energy 2012, 42, 213–223. [Google Scholar] [CrossRef]
 Öhman, H.; Lundqvist, P. Comparison and analysis of performance using Low Temperature Power Cycles. Appl. Therm. Eng. 2013, 52, 160–169. [Google Scholar] [CrossRef]
 Brigham, E.F.; Ehrhardt, M.C. Financial Management: Theory and Practice, 14th ed.; SouthWestern Cengage Learning: Mason, USA, 2014. [Google Scholar]
 Madhawa Hettiarachchi, H.D.; Golubovic, M.; Worek, W.M.; Ikegami, Y. Optimum design criteria for an Organic Rankine cycle using lowtemperature geothermal heat sources. Energy 2007, 32, 1698–1706. [Google Scholar]
 Cayer, E.; Galanis, N.; Nesreddine, H. Parametric study and optimization of a transcritical power cycle using a low temperature source. Appl. Energy 2010, 87, 1349–1357. [Google Scholar] [CrossRef]
 Zhang, S.; Wang, H.; Guo, T. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for lowtemperature geothermal power generation. Appl. Energy 2011, 88, 2740–2754. [Google Scholar] [CrossRef]
 Quoilin, S.; Declaye, S.; Tchanche, B.F.; Lemort, V. Thermoeconomic optimization of waste heat recovery Organic Rankine Cycles. Appl. Therm. Eng. 2011, 31, 2885–2893. [Google Scholar] [CrossRef]
 Wang, J.; Yan, Z.; Wang, M.; Ma, S.; Dai, Y. Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source. Energy 2013, 49, 356–365. [Google Scholar] [CrossRef]
 Wang, J.; Yan, Z.; Wang, M.; Li, M.; Dai, Y. Multiobjective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm. Energy Convers. Manag. 2013, 71, 146–158. [Google Scholar] [CrossRef]
 Lecompte, S.; Huisseune, H.; van den Broek, M.; de Schampheleire, S.; de Paepe, M. Part load based thermoeconomic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system. Appl. Energy 2013, 111, 871–881. [Google Scholar] [CrossRef]
 Pierobon, L.; Nguyen, T.V.; Larsen, U.; Haglind, F.; Elmegaard, B. Multiobjective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform. Energy 2013, 58, 538–549. [Google Scholar] [CrossRef]
 Astolfi, M.; Romano, M.C.; Bombarda, P.; Macchi, E. Binary ORC (Organic Rankine Cycles) power plants for the exploitation of medium–low temperature geothermal sources–Part B: Technoeconomic optimization. Energy 2014, 66, 435–446. [Google Scholar]
 Shu, G.; Yu, G.; Tian, H.; Wei, H.; Liang, X. A MultiApproach Evaluation System (MAES) of Organic Rankine Cycles (ORC) used in waste heat utilization. Appl. Energy 2014, 132, 325–338. [Google Scholar] [CrossRef]
 Li, Y.R.; Du, M.T.; Wu, C.M.; Wu, S.Y.; Liu, C. Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery. Energy 2014, 77, 509–519. [Google Scholar] [CrossRef]
 Li, Y.R.; Du, M.T.; Wu, C.M.; Wu, S.Y.; Liu, C.; Xu, J.L. Economical evaluation and optimization of subcritical organic Rankine cycle based on temperature matching analysis. Energy 2014, 68, 238–247. [Google Scholar] [CrossRef]
 Imran, M.; Park, B.S.; Kim, H.J.; Lee, D.H.; Usman, M.; Heo, M. Thermoeconomic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications. Energy Convers. Manag. 2014, 87, 107–118. [Google Scholar] [CrossRef]
 Nusiaputra, Y.Y.; Wiemer, H.J.; Kuhn, D. ThermalEconomic modularization of small, organic Rankine cycle power plants for midenthalpy geothermal fields. Energies 2014, 7, 4221–4240. [Google Scholar] [CrossRef]
 Li, M.; Wang, J.; Li, S.; Wang, X.; He, W.; Dai, Y. Thermoeconomic analysis and comparison of a CO2 transcritical power cycle and an organic Rankine cycle. Geothermics 2014, 50, 101–111. [Google Scholar] [CrossRef]
 Toffolo, A.; Lazzaretto, A.; Manente, G.; Paci, M. A multicriteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems. Appl. Energy 2014, 121, 219–232. [Google Scholar] [CrossRef]
 Meinel, D.; Wieland, C.; Spliethoff, H. Economic comparison of ORC (Organic Rankine cycle) processes at different scales. Energy 2014, 74, 694–706. [Google Scholar] [CrossRef]
 Deb, K. MultiObjective Optimization Using Evolutionary Algorithms; Wiley: Chicester, West Sussex, UK, 2001. [Google Scholar]
 Mago, P.J.; Chamra, L.M.; Srinivasan, K.; Somayaji, C. An examination of regenerative organic Rankine cycles using dry fluids. Appl. Therm. Eng. 2008, 28, 998–1007. [Google Scholar] [CrossRef]
 Hung, T.C.; Shai, T.Y.; Wang, S.K. A review of organic rankine cycles (ORCs) for the recovery of lowgrade waste heat. Energy 1997, 22, 661–667. [Google Scholar] [CrossRef]
 Lai, N.A.; Wendland, M.; Fischer, J. Working fluids for hightemperature organic Rankine cycles. Energy 2011, 36, 199–211. [Google Scholar] [CrossRef]
 Martin, H. Economic optimization of compact heat exchangers. In Proceedings of the EFConference on Compact Heat Exchangers and Enhancement Technology for the Process Industries, Banff, AB, Canada, 18–23 July 1999.
 Han, D.H.; Lee, K.J.; Kim, Y.H. Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations. Appl. Therm. Eng. 2003, 23, 1209–1225. [Google Scholar] [CrossRef]
 Han, D.; Lee, K.; Kim, Y. The characteristics of condensation in brazed plate heat and exchangers with different chevron angles. J. Korean Phys. Soc. 2003, 43, 66–73. [Google Scholar]
 Hsieh, Y.Y.; Lin, T.F. Evaporation heat transfer and pressure drop of refrigerant R410A flow in a vertical plate heat exchanger. J. Heat Transf. 2003, 125, 852–857. [Google Scholar] [CrossRef]
 Yan, Y.Y.; Lin, T.F. Evaporation heat transfer and pressure drop of refrigerant R134a in a plate heat exchanger. J. Heat Transf. 1999, 121, 118–127. [Google Scholar] [CrossRef]
 Kuo, C.R.; Hsu, S.W.; Chang, K.H.; Wang, C.C. Analysis of a 50kW organic Rankine cycle system. Energy 2011, 36, 5877–5885. [Google Scholar] [CrossRef]
 Walraven, D.; Laenen, B.; D’haeseleer, W. Comparison of shellandtube with plate heat exchangers for the use in lowtemperature organic Rankine cycles. Energy Convers. Manag. 2014, 87, 227–237. [Google Scholar] [CrossRef]
 GarcíaCascales, J.R.; VeraGarcía, F.; CorberánSalvador, J.M.; GonzálvezMaciá, J. Assessment of boiling and condensation heat transfer correlations in the modelling of plate heat exchangers. Int. J. Refrig. 2007, 30, 1029–1041. [Google Scholar] [CrossRef]
 Petukhov, B.S.; Krasnoschekov, E.A.; Protopopov, V.S. An investigation of heat transfer to fluid flowing in pipes under supercritical conditions. In Proceedings of the International Developments in Heat Transfer, University of Colorado, Boulder, CO, USA, 8–12 January 1961; Volume 67, pp. 569–578.
 Wang, L.; Sundén, B.; Manglik, R.M. Plate Heat Exchangers: Design, Applications and Performance; WIT Press: Southampton, UK, 2007. [Google Scholar]
 Barbazza, L.; Pierobon, L.; Mirandola, A.; Haglind, F. Optimal design of compact organic Rankine cycle units for domestic solar applications. Therm. Sci. 2014, 18, 811–822. [Google Scholar] [CrossRef] [Green Version]
 Wang, L.; Sundén, B. Optimal design of plate heat exchangers with and without pressure drop specifications. Appl. Therm. Eng. 2003, 23, 295–311. [Google Scholar] [CrossRef]
 Turton, R.; Bailie, R.C.; Whiting, W.B.; Shaeiwitz, J.; Bhattacharyya, D. Analysis, Synthesis and Design of Chemical Processes, 4th ed.; Pearson Education: Ann Arbor, MI, USA, 2013. [Google Scholar]
 Lee, Y.R.; Kuo, C.R.; Wang, C.C. Transient response of a 50 kW organic Rankine cycle system. Energy 2012, 48, 532–538. [Google Scholar] [CrossRef]
 Declaye, S.; Quoilin, S.; Guillaume, L.; Lemort, V. Experimental study on an opendrive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid. Energy 2013, 55, 173–183. [Google Scholar] [CrossRef]
 Sauret, E.; Rowlands, A.S. Candidate radialinflow turbines and highdensity working fluids for geothermal power systems. Energy 2011, 36, 4460–4467. [Google Scholar] [CrossRef]
 Kang, S.H. Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid. Energy 2012, 41, 514–524. [Google Scholar] [CrossRef]
 Luján, J.M.; Serrano, J.R.; Dolz, V.; Sánchez, J. Model of the expansion process for R245fa in an Organic Rankine Cycle (ORC). Appl. Therm. Eng. 2012, 40, 248–257. [Google Scholar] [CrossRef]
 Da Lio, L.; Manente, G.; Lazzaretto, A. New efficiency charts for the optimum design of axial flow turbines for organic Rankine cycles. Energy 2014, 77, 447–459. [Google Scholar] [CrossRef]
 Klein, S.A. Engineering Equation Solver; FChart Software: Middleton, WI, USA, 2010. [Google Scholar]
 Lemmon, E.W.; Span, R. Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 2006, 51, 785–850. [Google Scholar] [CrossRef]
 Lemmon, E.W.; Huber, M.L.; McLinden, M.O. Reference Fluid Thermodynamic and Transport PropertiesREFPROP, Version 9.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013.
 Huber, M.L.; Laesecke, A.; Perkins, R.A. Model for the viscosity and thermal conductivity of refrigerants, including a new correlation for the viscosity of R134a. Ind. Eng. Chem. Res. 2003, 42, 3163–3178. [Google Scholar] [CrossRef]
 Marsh, K.N.; Perkins, R.A.; Ramires, M.L.V. Measurement and correlation of the thermal conductivity of propane from 86 to 600 K at pressures to 70 MPa. J. Chem. Eng. Data 2002, 47, 932–940. [Google Scholar] [CrossRef]
 Macchi, E. The choice of working fluid: The most important step for a successful organic Rankine cycle (and an efficient turbine), Keynote lecture. In Proceedings of the ASME ORC2013, Rotterdam, The Netherlands, 7–8 October 2013.
 Maraver, D.; Royo, J.; Lemort, V.; Quoilin, S. Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications. Appl. Energy 2014, 117, 11–29. [Google Scholar] [CrossRef]
 Shah, R.K.; Subbarao, E.C.; Mashelkar, R.A. Heat Transfer Equipment Design; CRC Press: New York, NY, USA, 1988. [Google Scholar]
 Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algoritm: NSGAII. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
 Feng, Y.; Zhang, Y.; Li, B.; Yang, J.; Shi, Y. Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery. Energy 2015, 82, 664–677. [Google Scholar] [CrossRef]
 Ahmadi, P.; Dincer, I.; Rosen, M.A. Thermodynamic modeling and multiobjective evolutionarybased optimization of a new multigeneration energy system. Energy Convers. Manag. 2013, 76, 282–300. [Google Scholar] [CrossRef]
 Ahmadi, P.; Dincer, I.; Rosen, M.A. Thermoeconomic multiobjective optimization of a novel biomassbased integrated energy system. Energy 2014, 68, 958–970. [Google Scholar] [CrossRef]
 Hajabdollahi, Z.; Hajabdollahi, F.; Tehrani, M.; Hajabdollahi, H. Thermoeconomic environmental optimization of Organic Rankine Cycle for diesel waste heat recovery. Energy 2013, 63, 142–151. [Google Scholar] [CrossRef]
 MATLAB Release 2013b, The MathWorks, Inc.: Natick, MA, USA.
 Lemmens, S.; Lecompte, S.; de Paepe, M. Workshop Financial Appraisal of ORC Systems. In Presented at ORCNext Project, Antwerp, Belgium, 18 September 2014.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecompte, S.; Lemmens, S.; Huisseune, H.; Van den Broek, M.; De Paepe, M. MultiObjective ThermoEconomic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery. Energies 2015, 8, 27142741. https://doi.org/10.3390/en8042714
Lecompte S, Lemmens S, Huisseune H, Van den Broek M, De Paepe M. MultiObjective ThermoEconomic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery. Energies. 2015; 8(4):27142741. https://doi.org/10.3390/en8042714
Chicago/Turabian StyleLecompte, Steven, Sanne Lemmens, Henk Huisseune, Martijn Van den Broek, and Michel De Paepe. 2015. "MultiObjective ThermoEconomic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery" Energies 8, no. 4: 27142741. https://doi.org/10.3390/en8042714