Relationship Between Energy Efficiency and Color Consistency in LED Lighting
Abstract
1. Introduction
2. Materials and Methods
- Group 1: sources with chromaticities located within the 3-step u′,v′ circle (SPDs shown in Figure 2b);
- Group 2: sources with chromaticities positioned between the 3-step and 5-step u′,v′ circles (SPDs shown in Figure 2d);
- Group 3: sources with chromaticities located outside the 5-step u′,v′ circle but within the 7-step quadrangles (SPDs shown in Figure 2f).
- Gray: LED sources with chromaticities within the 3-step u′,v′ circle
- Gray-purple: sources with chromaticities within the 5-step u′,v′ circle
- Green: sources with chromaticities within the 7-step quadrangles but outside the 5-step u′,v′ circle
- Blue: all LED sources with chromaticities within the 7-step quadrangles
3. Results
- Gray: LED sources with chromaticities within the 3-step u′,v′ circle;
- Gray-purple: sources with chromaticities within the 5-step u′,v′ circle;
- Green: sources with chromaticities within the 7-step quadrangles but out-side the 5-step u′,v′ circle;
- Blue: all LED sources with chromaticities within the 7-step quadrangles.




4. Discussion and Conclusions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Statistical Analysis of LER Parameter for LED Light Sources
- Nominal CCT 3000 K, CRI Ra ≥ 60;
- Nominal CCT 3000 K, CRI Ra ≥ 80;
- Nominal CCT 4000 K, CRI Ra ≥ 60;
- Nominal CCT 4000 K, CRI Ra ≥ 80.
- within the entire 7-step ANSI bin;
- within the 3-step u′,v′ color-consistency circle;
- within the 5-step u′,v′ color-consistency circle;
- outside the 5-step u′,v′ color-consistency circle (but within the ANSI bin).
- Step 1.
- To testing the normality of data distribution, the Shapiro–Wilk test was applied to verify the normality of the data distributions. The test revealed significant deviations from normal distribution in all analyzed groups, which justified the use of non-parametric methods in subsequent analyses.Due to the non-normal data distribution, the Kruskal–Wallis test was used—a non-parametric method for comparing medians between more than two independent groups. The test was performed for all four variants of LED light sources.
- Step 2.
- The Kruskal–Wallis test revealed significant differences between groups regarding the LER parameter in all analyzed variants. The weakest statistical effect was observed for LED sources with nominal CCT 4000 K and CRI Ra ≥ 80 (p = 0.02), which nevertheless remained statistically significant at the α = 0.05 level.
- Step 3.
- For the variant with CCT 4000 K and CRI Ra ≥ 80 sources, Dunn’s post hoc test with Bonferroni correction was conducted to identify specific differences between groups. The analysis revealed a statistically significant difference (p = 0.02) between LED sources whose chromaticities was located within the 3-step u′,v′ circle and sources positioned within the 7-step ANSI bin but simultaneously outside the 5-step u′,v′ circle.
References
- Haitz, R.; Tsao, J.Y. Solid-state Lighting: ‘The Case’ 10 Years after and Future Prospects. Phys. Status Solidi (a) 2011, 208, 17–29. [Google Scholar] [CrossRef]
- Tsao, J.Y.; Saunders, H.D.; Creighton, J.R.; Coltrin, M.E.; Simmons, J.A. Solid-State Lighting: An Energy-Economics Perspective. J. Phys. D Appl. Phys. 2010, 43, 354001. [Google Scholar] [CrossRef]
- Xiao, P.; Yu, Y.; Cheng, J.; Chen, Y.; Yuan, S.; Chen, J.; Yuan, J.; Liu, B. Advances in Perovskite Light-Emitting Diodes Possessing Improved Lifetime. Nanomaterials 2021, 11, 103. [Google Scholar] [CrossRef]
- Diouf, B.; Muley, A.; Pode, R. Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications. Energies 2023, 16, 6498. [Google Scholar] [CrossRef]
- Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White Light Emitting Diodes with Super-High Luminous Efficacy. J. Phys. D Appl. Phys. 2010, 43, 354002. [Google Scholar] [CrossRef]
- Tarashioon, S.; Baiano, A.; Van Zeijl, H.; Guo, C.; Koh, S.W.; Van Driel, W.D.; Zhang, G.Q. An Approach to “Design for Reliability” in Solid State Lighting Systems at High Temperatures. Microelectron. Reliab. 2012, 52, 783–793. [Google Scholar] [CrossRef]
- Wantuch, A.; Olesiak, M. Effect of LED Lighting on Selected Quality Parameters of Electricity. Sensors 2023, 23, 1582. [Google Scholar] [CrossRef] [PubMed]
- Sikora, R.; Markiewicz, P. Analysis of Electric Power Quantities of Road LED Luminaires under Sinusoidal and Non-Sinusoidal Conditions. Energies 2019, 12, 1109. [Google Scholar] [CrossRef]
- Sikora, R.; Markiewicz, P.; Pabjańczyk, W. The Active Power Losses in the Road Lighting Installation with Dimmable LED Luminaires. Sustainability 2018, 10, 4742. [Google Scholar] [CrossRef]
- Richter, J.L.; Tähkämö, L.; Dalhammar, C. Trade-Offs with Longer Lifetimes? The Case of LED Lamps Considering Product Development and Energy Contexts. J. Clean. Prod. 2019, 226, 195–209. [Google Scholar] [CrossRef]
- Casamayor, J.; Su, D.; Ren, Z. Comparative Life Cycle Assessment of LED Lighting Products. Light. Res. Technol. 2018, 50, 801–826. [Google Scholar] [CrossRef]
- Fryc, I.; Bisegna, F.; Tabaka, P. Lighting of Recreation Grounds as a Source of Sky Glow—The Influence of Luminaire Type on This Phenomenon. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Ou, H.; Corell, D.; Ou, Y.; Poulsen, P.B.; Dam-Hansen, C.; Petersen, P.-M. Spectral Design Flexibility of LED Brings Better Life. In Proceedings of the SPIE—The International Society for Optical Engineering, San Francisco, CA, USA, 21–22 January 2012; Volume 8278, p. 827802. [Google Scholar] [CrossRef]
- Žukauskas, A.; Vaicekauskas, R.; Vitta, P. Optimization of Solid-State Lamps for Photobiologically Friendly Mesopic Lighting. Appl. Opt. 2012, 51, 8423. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Pan, J.; Feng, H. Accelerated Life Test for High-Power White LED Based on Spectroradiometric Measurement. In Proceedings of the SPIE Photonics Asia 2007, Beijing, China, 12–14 November 2007; Volume 6841, p. 684104. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, M.; Yan, Y.; Huang, J.; Li, Y.; Feng, T.; Zhu, X.; Li, Z.; Xu, C.; Wang, J.; et al. High Luminous Efficacy Phosphor-Converted Mass-Produced White LEDs Achieved by AlN Prebuffer and Transitional-Refraction-Index Patterned Sapphire Substrate. Nanomaterials 2022, 12, 1638. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zou, J.; Shi, M.; Li, Y.; Yang, B.; Wang, Z.; Li, W.; Zheng, F.; Zhou, H.; Jiang, N. Effect of Phosphor Composition and Packaging Structure of Flexible Phosphor Films on Performance of White LEDs. J. Mater. Sci. Mater. Electron. 2018, 29, 18476–18485. [Google Scholar] [CrossRef]
- Mueller-Mach, R.; Mueller, G.; Krames, M.R.; Höppe, H.A.; Stadler, F.; Schnick, W.; Juestel, T.; Schmidt, P. Highly Efficient All-nitride Phosphor-converted White Light Emitting Diode. Phys. Status Solidi (a) 2005, 202, 1727–1732. [Google Scholar] [CrossRef]
- Law, T.K.; Lim, F.; Li, Y.; Yeong, K.K.G.; Sng, G.K.E.; Uvarajan, M.V.; Teo, J.W.R. Implications of Phosphor Coating on the Thermal Characteristics of Phosphor-Converted White LEDs. IEEE Trans. Device Mater. Reliab. 2016, 16, 576. [Google Scholar] [CrossRef]
- Davis, J.L.; Mills, K.; Lamvik, M.; Perkins, C.; Georgiy; Bobashev; Young, J.; Yaga, R.; Johnson, C. Understanding and Controlling Chromaticity Shift in LED Devices. In Proceedings of the 2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Dresden, Germany, 3–5 April 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Zheng, C.; Guo, B.; Lu, T.; Zhu, X.; Xia, B.; Yang, B.; Yang, Z.; Lishik, S.; Chernyakov, A.; Xiong, J.; et al. Enhanced Highly Thermal-Humidity Reliability of (Sr,Ca)AlSiN3:Eu2+ Phosphors via Rapid Plasma-Assisted Silica Surface Coating. Opt. Express 2025, 33, 4940. [Google Scholar] [CrossRef]
- Islam, N.U.; Usman, M.; Jamil, T. Energy-Savings Using Solid-State Lighting: A Case Study of India, Pakistan, and Bangladesh. Energy Policy 2022, 160, 112676. [Google Scholar] [CrossRef]
- Pimputkar, S.; Speck, J.S.; DenBaars, S.P.; Nakamura, S. Prospects for LED Lighting. Nat. Photon 2009, 3, 180–182. [Google Scholar] [CrossRef]
- De Almeida, A.; Santos, B.; Paolo, B.; Quicheron, M. Solid State Lighting Review—Potential and Challenges in Europe. Renew. Sustain. Energy Rev. 2014, 34, 30–48. [Google Scholar] [CrossRef]
- Fryc, I.; Listowski, M.; Martinsons, C.; Fan, J.; Czyżewski, D. A Paradox of LED Road Lighting: Reducing Light Pollution Is Not Always Linked to Energy Savings. Energies 2024, 17, 5727. [Google Scholar] [CrossRef]
- Storms, M.; Degen, T.; Degen, J. Female Moths Call in Vain: Streetlights Diminish the Promise of Mating. Ecol. Entomol. 2025, 50, 729–740. [Google Scholar] [CrossRef]
- Briolat, E.S.; Gaston, K.J.; Bennie, J.; Rosenfeld, E.J.; Troscianko, J. Artificial Nighttime Lighting Impacts Visual Ecology Links between Flowers, Pollinators and Predators. Nat. Commun. 2021, 12, 4163. [Google Scholar] [CrossRef]
- Tan, J.; Narendran, N. Defining Phosphor Luminescence Property Requirements for White AC LED Flicker Reduction. J. Lumin. 2015, 167, 21–26. [Google Scholar] [CrossRef]
- Ohno, Y. Spectral Design Considerations for White LED Color Rendering. Opt. Eng. 2005, 44, 111302. [Google Scholar] [CrossRef]
- Houser, K.W.; Wei, M.; David, A.; Krames, M.R.; Shen, X.S. Review of Measures for Light-Source Color Rendition and Considerations for a Two-Measure System for Characterizing Color Rendition. Opt. Express 2013, 21, 10393. [Google Scholar] [CrossRef]
- Wright, W.D. The Sensitivity of the Eye to Small Colour Differences. Proc. Phys. Soc. 1941, 53, 93–112. [Google Scholar] [CrossRef]
- Ruppertsberg, A.I.; Bloj, M.; Hurlbert, A. Sensitivity to Luminance and Chromaticity Gradients in a Complex Scene. J. Vis. 2008, 8, 3. [Google Scholar] [CrossRef]
- Lindsey, D.T.; Wee, A.G. Perceptibility and Acceptability of CIELAB Color Differences in Computer-Simulated Teeth. J. Dent. 2007, 35, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Jeon, J.Y. Effects of Correlated Colour Temperature of LED Light on Visual Sensation, Perception, and Cognitive Performance in a Classroom Lighting Environment. Sustainability 2020, 12, 4051. [Google Scholar] [CrossRef]
- Shamsul, B.M.T.; Sia, C.C.; Ng, Y.G.; Karmegan, K. Effects of Light’s Colour Temperatures on Visual Comfort Level, Task Performances, and Alertness among Students. AJPHR 2013, 1, 159–165. [Google Scholar] [CrossRef]
- Özkul, E.; Bilgili, B.; Koç, E. The Influence of the Color of Light on the Customers’ Perception of Service Quality and Satisfaction in the Restaurant. Color Res. Appl. 2020, 45, 1217–1240. [Google Scholar] [CrossRef]
- Stylidis, K.; Woxlin, A.; Siljefalk, L.; Heimersson, E.; Söderberg, R. Understanding Light. A Study on the Perceived Quality of Car Exterior Lighting and Interior Illumination. Procedia CIRP 2020, 93, 1340–1345. [Google Scholar] [CrossRef]
- Custers, P.; De Kort, Y.; IJsselsteijn, W.; De Kruiff, M. Lighting in Retail Environments: Atmosphere Perception in the Real World. Light. Res. Technol. 2010, 42, 331–343. [Google Scholar] [CrossRef]
- Żagan, W. The Aesthetics of Lighting. Przegląd Elektrotechniczny 2017, 1, 146–149. [Google Scholar] [CrossRef]
- Zhao, J.; Dai, Y.; Liu, Q. Effects of Color in Lighting on Aesthetic Preference and Perceived Safety during the Evening. Environ. Eng. Manag. J. 2022, 21, 1427–1437. [Google Scholar] [CrossRef]
- Nitse, P.S.; Parker, K.R.; Krumwiede, D.; Ottaway, T. The Impact of Color in the E-commerce Marketing of Fashions: An Exploratory Study. Eur. J. Mark. 2004, 38, 898–915. [Google Scholar] [CrossRef]
- Rea, M.S.; Freyssinier, J.P. Color Rendering: Beyond Pride and Prejudice. Color Res. Appl. 2010, 35, 401–409. [Google Scholar] [CrossRef]
- Fathabadi, A.; Imanparast, A.; Rashidian Vaziri, M.R.; Sazgarnia, A. Broad-Scope Analysis of Color, Performance, and Safety of Residential Led. 2025. Available online: https://ssrn.com/abstract=5270112 (accessed on 27 May 2025).
- Frascarolo, M.; Martorelli, S.; Vitale, V. An Innovative Lighting System for Residential Application That Optimizes Visual Comfort and Conserves Energy for Different User Needs. Energy Build. 2014, 83, 217–224. [Google Scholar] [CrossRef]
- Kim, G.; Kim, J.T. Healthy-Daylighting Design for the Living Environment in Apartments in Korea. Build. Environ. 2010, 45, 287–294. [Google Scholar] [CrossRef]
- ANSI C78.377-2017; American National Standard for Electric Lamps—Specifications for the Chromaticity of Solid State Lighting (SSL) Products. American National Standards Institute: Washington, DC, USA, 2017.
- CIE TN 001:2014; Chromaticity Difference Specification for Light Sources. International Commission on Illumination: Vienna, Austria, 2014. Available online: https://cie.co.at/publications/chromaticity-difference-specification-light-sources (accessed on 27 May 2025).
- Tanaka, M.; Horiuchi, T.; Tominaga, S. Color Control of a Lighting System Using RGBW LEDs. In Proceedings of the SPIE—The International Society for Optical Engineering, IS&T/SPIE Electronic Imaging, San Francisco, CA, USA, 23–27 January 2011; Volume 7866, p. 78660W. [Google Scholar] [CrossRef]
- Goudjil, A.; Pigeon, E.; Pouliquen, M.; Menard, T.; Gehan, O.; Girard, S.; Dufay, B.; Boudjelal, A. An Interior-Points Algorithm for Color and CCT Control of Multichannel LED Lighting System Using a Smart 18-Channel Spectral Sensor. Energy Build. 2023, 298, 113541. [Google Scholar] [CrossRef]
- Hoelen, C.; Van Der Burgt, P.; Jungwirth, P.; Keuper, M.; Man, K.; Mutter, C.; Ter Weeme, J.-W. Color-Consistent LED Modules for General Lighting. In Proceedings of the SPIE OPTO: Integrated Optoelectronic Devices, San Jose, CA, USA, 24–29 January 2009; Volume 7231, p. 72310A. [Google Scholar] [CrossRef]
- Fryc, I.; Listowski, M.; Supronowicz, R. Going beyond the 20th Century Color Space to Evaluate LED Color Consistency. Opt. Express 2023, 31, 38666. [Google Scholar] [CrossRef]
- Deshpande, A.; Kolodin, B.; Jacob, C.; Chowdhury, A.; Kuenzler, G.; Sater, K.; Aesram, D.; Glaettli, S.; Gallagher, B.; Langer, P.; et al. Development of Advanced Manufacturing Methods for Warm White LEDs for General Lighting; National Energy Technology Laboratory: Pittsburgh, PA, USA; Morgantown, WV, USA, 2012. [Google Scholar]
- Zhan, X.; Wang, W.; Chung, H. A Neural-Network-Based Color Control Method for Multi-Color LED Systems. IEEE Trans. Power Electron. 2019, 34, 7900–7913. [Google Scholar] [CrossRef]
- Trivellin, N.; Meneghini, M.; Buffolo, M.; Meneghesso, G.; Zanoni, E. Failures of LEDs in Real-World Applications: A Review. IEEE Trans. Device Mater. Relib. 2018, 18, 391–396. [Google Scholar] [CrossRef]
- Fryc, I.; Listowski, M.; Supronowicz, R.; Martinsons, C. Selecting Energy-Efficient LED Retrofits with Optimal Color Qualities for New and Refurbished Buildings. Energies 2024, 18, 112. [Google Scholar] [CrossRef]
- Fryc, I.; Listowski, M.; Martinsons, C. Color Quality Versus Energy Efficiency: A Dual Perspective on LED Retrofits in Healthcare Examination Rooms. Appl. Sci. 2025, 15, 756. [Google Scholar] [CrossRef]
- De Souza, D.F.; Da Silva, P.P.F.; Fontenele, L.F.A.; Barbosa, G.D.; De Oliveira Jesus, M. Efficiency, Quality, and Environmental Impacts: A Comparative Study of Residential Artificial Lighting. Energy Rep. 2019, 5, 409–424. [Google Scholar] [CrossRef]
- Royer, M. Evaluating Tradeoffs between Energy Efficiency and Color Rendition. OSA Contin. 2019, 2, 2308. [Google Scholar] [CrossRef]
- Liu, J.G.; Tang, W.; Shen, C.; Ke, Y.; Sun, G. Advances in Higher Color Quality and Healthier White LEDs. In Proceedings of the 2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Beijing, China, 1–3 November 2017; pp. 13–16. [Google Scholar] [CrossRef]
- Baniya, R.; Maksimainen, M.; Sierla, S.; Pang, C.; Yang, C.-W.; Vyatkin, V. Smart Indoor Lighting Control: Power, Illuminance, and Colour Quality. In Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1–4 June 2014; pp. 1745–1750. [Google Scholar] [CrossRef]
- Smet, K.; Ryckaert, W.; Pointer, M.; Deconinck, G.; Hanselaer, P. Optimization of Colour Quality of LED Lighting with Reference to Memory Colours. Light. Res. Technol. 2012, 44, 7–15. [Google Scholar] [CrossRef]
- Hung, P.-C.; Tsao, J.Y. Maximum White Luminous Efficacy of Radiation Versus Color Rendering Index and Color Temperature: Exact Results and a Useful Analytic Expression. J. Disp. Technol. 2013, 9, 405–412. [Google Scholar] [CrossRef]
- Chen, D.-C.; Liu, Z.-G.; Deng, Z.-H.; Wang, C.; Cao, Y.-G.; Liu, Q.-L. Optimization of Light Efficacy and Angular Color Uniformity by Hybrid Phosphor Particle Size for White Light-Emitting Diode. Rare Met. 2014, 33, 348–352. [Google Scholar] [CrossRef]
- Chen, B.-M.; Chen, C.-H.; Ying, S.-P.; Chang, Y.-K. Replication of Leaf Surface Structures on Flat Phosphor-Converted LEDs for Enhanced Angular Color Uniformity. Micromachines 2024, 15, 1399. [Google Scholar] [CrossRef]
- Kim, S.H.; Song, Y.H.; Jeon, S.R.; Jeong, T.; Kim, J.Y.; Ha, J.S.; Kim, W.H.; Baek, J.H.; Yang, G.M.; Park, H.J. Enhanced Luminous Efficacy in Phosphor-Converted White Vertical Light-Emitting Diodes Using Low Index Layer. Opt. Express 2013, 21, 6353. [Google Scholar] [CrossRef] [PubMed]
- Royer, M.; Murdoch, M.J.; Smet, K.; Whitehead, L.; David, A.; Houser, K.; Esposito, T.; Livingston, J.; Ohno, Y. Improved Method for Evaluating and Specifying the Chromaticity of Light Sources. LEUKOS 2023, 19, 35–52. [Google Scholar] [CrossRef]
- Royer, M.P. Background and Guidance for Using the ANSI/IES TM-30 Method for Evaluating Light Source Color Rendition. LEUKOS 2022, 18, 191–231. [Google Scholar] [CrossRef]
- Royer, M.; Wilkerson, A.; Wei, M. Human Perceptions of Colour Rendition at Different Chromaticities. Light. Res. Technol. 2018, 50, 965–994. [Google Scholar] [CrossRef]
- ANSI/IES TM-30-20; IES Method for Evaluating Light Source Color Rendition. Illuminating Engineering Society: New York, NY, USA, 2021. Available online: https://store.ies.org/product/technical-memorandum-ies-method-for-evaluating-light-source-color-rendition/?v=288404204e3d (accessed on 27 May 2025).
- Royer, M. Real Light Source SPDs and Color Data for Use in Research. 2023. Available online: https://figshare.com/articles/dataset/Real_Light_Source_SPDs_and_Color_Data_for_Use_in_Research/12947240 (accessed on 27 May 2025). [CrossRef]
- Jost, S.; Thorseth, A.; Poikonen, T.; Blattner, P.; Gerloff, T.; Kokka, A.; Dekker, P.; Smid, M.; Ferrero, A.; Kubarsepp, T.; et al. EMPIR 15SIB07 PhotoLED—Database of LED Product Spectra. 2021. Available online: https://data.dtu.dk/articles/dataset/EMPIR_15SIB07_PhotoLED_-_Database_of_LED_product_spectra/12783389 (accessed on 27 May 2025). [CrossRef]
- Neberich, M.; Opferkuch, F. Standardizing Melanopic Effects of Ocular Light for Ecological Lighting Design of Nonresidential Buildings—An Overview of Current Legislation and Accompanying Scientific Studies. Sustainability 2021, 13, 5131. [Google Scholar] [CrossRef]
- Van De Perre, L.; Smet, K.; Hanselaer, P.; Dujardin, M.; Ryckaert, W. The Effect of Correlated Colour Temperature and Wall Luminance on Spatial Brightness and Scene Preference in a Windowless Office Setup. Light. Res. Technol. 2024, 56, 316–336. [Google Scholar] [CrossRef]
- Dangol, R.; Islam, M.; Hyvärinen, M.; Bhushal, P.; Puolakka, M.; Halonen, L. User Acceptance Studies for LED Office Lighting: Preference, Naturalness and Colourfulness. Light. Res. Technol. 2015, 47, 36–53. [Google Scholar] [CrossRef]
- Arrêté Du 27 Décembre 2018 Relatif à La Prévention, à La Réduction et à La Limitation Des Nuisances Lumineuses. 2018. Available online: https://aida.ineris.fr/reglementation/arrete-241219-modifiant-larrete-27-decembre-2018-relatif-a-prevention-a-reduction-a (accessed on 27 May 2025).
- Code de L’environnement. Available online: https://www.legifrance.gouv.fr/codes/texte_lc/LEGITEXT000006074220/ (accessed on 27 May 2025).
- Linares Arroyo, H.; Abascal, A.; Degen, T.; Aubé, M.; Espey, B.R.; Gyuk, G.; Hölker, F.; Jechow, A.; Kuffer, M.; Sánchez De Miguel, A.; et al. Monitoring, Trends and Impacts of Light Pollution. Nat. Rev. Earth Environ. 2024, 5, 605. [Google Scholar] [CrossRef]
- Gaston, K.J.; Davies, T.W.; Bennie, J.; Hopkins, J. REVIEW: Reducing the Ecological Consequences of Night-time Light Pollution: Options and Developments. J. Appl. Ecol. 2012, 49, 1256–1266. [Google Scholar] [CrossRef]
- Kostic, M.; Djokic, L. Recommendations for Energy Efficient and Visually Acceptable Street Lighting. Energy 2009, 34, 1565–1572. [Google Scholar] [CrossRef]
- Luginbuhl, C.B.; Boley, P.A.; Davis, D.R. The Impact of Light Source Spectral Power Distribution on Sky Glow. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 21–26. [Google Scholar] [CrossRef]
- Aubé, M.; Roby, J.; Kocifaj, M. Evaluating Potential Spectral Impacts of Various Artificial Lights on Melatonin Suppression, Photosynthesis, and Star Visibility. PLoS ONE 2013, 8, e67798. [Google Scholar] [CrossRef] [PubMed]
- Longcore, T. A Compendium of Photopigment Peak Sensitivities and Visual Spectral Response Curves of Terrestrial Wildlife to Guide Design of Outdoor Nighttime Lighting. Basic Appl. Ecol. 2023, 73, 40–50. [Google Scholar] [CrossRef]
- Cabrera-Cruz, S.A.; Smolinsky, J.A.; Buler, J.J. Light Pollution Is Greatest within Migration Passage Areas for Nocturnally-Migrating Birds around the World. Sci. Rep. 2018, 8, 3261. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, A.L.; Hall, M.L.; Jones, T.M. The Effect of Natural and Artificial Light at Night on Nocturnal Song in the Diurnal Willie Wagtail. Sci. Total Environ. 2022, 808, 151986. [Google Scholar] [CrossRef]
- Aulsebrook, A.E.; Connelly, F.; Johnsson, R.D.; Jones, T.M.; Mulder, R.A.; Hall, M.L.; Vyssotski, A.L.; Lesku, J.A. White and Amber Light at Night Disrupt Sleep Physiology in Birds. Curr. Biol. 2020, 30, 3657–3663.e5. [Google Scholar] [CrossRef] [PubMed]
- Lyytimäki, J. Sustainable Development Goals Relighted: Light Pollution Management as a Novel Lens to SDG Achievement. Discov. Sustain. 2025, 6, 197. [Google Scholar] [CrossRef]





| Statistical Parameters | 3-Step u′,v′ Circle | 5-Step u′,v′ Circle | Nominal CCT LEDs (Outside the 5-Step u′,v′ Circle) | 7-Step Quadrangle |
|---|---|---|---|---|
| Lower quartile (Q1) | 307 | 306 | 301 | 305 |
| Upper quartile (Q3) | 325 | 325 | 330 | 326 |
| Average | 314 | 315 | 316 | 315 |
| Median | 314 | 316 | 315 | 316 |
| Minimum (outlier are excluded) | 283 | 279 | 262 | 273 |
| Maximum(outlier are excluded) | 350 | 354 | 367 | 355 |
| Minimum (outlier are included) | 245 | 245 | 262 | 245 |
| Maximum (outlier are included) | 355 | 365 | 367 | 367 |
| Standard deviation (SD) | 16.01 | 17.65 | 20.46 | 18.33 |
| Statistical Parameters | 3-Step u′,v′ Circle | 5-Step u′,v′ Circle | Nominal CCT LEDs (Outside the 5-Step u′,v′ Circle) | 7-Step Quadrangle |
|---|---|---|---|---|
| Lower quartile (Q1) | 307 | 305 | 297 | 303 |
| Upper quartile (Q3) | 323 | 322 | 320 | 322 |
| Average | 312 | 312 | 308 | 311 |
| Median | 313 | 314 | 307 | 312 |
| Minimum (outlier are excluded) | 284 | 279 | 262 | 279 |
| Maximum(outlier are excluded) | 339 | 339 | 335 | 339 |
| Minimum (outlier are included) | 245 | 245 | 262 | 245 |
| Maximum (outlier are included) | 339 | 339 | 335 | 339 |
| Standard deviation (SD) | 14.80 | 15.67 | 16.02 | 15.81 |
| Statistical Parameters | 3-Step u′,v′ Circle | 5-Step u′,v′ Circle | Nominal CCT LEDs (Outside the 5-Step u′,v′ Circle) | 7-Step Quadrangle |
|---|---|---|---|---|
| Lower quartile (Q1) | 314 | 314 | 312 | 314 |
| Upper quartile (Q3) | 328 | 328 | 332 | 328 |
| Average | 321 | 321 | 319 | 321 |
| Median | 321 | 321 | 320 | 321 |
| Minimum (outlier are excluded) | 294 | 294 | 286 | 292 |
| Maximum(outlier are excluded) | 348 | 348 | 356 | 349 |
| Minimum (outlier are included) | 251 | 251 | 270 | 251 |
| Maximum (outlier are included) | 348 | 371 | 356 | 371 |
| Standard deviation (SD) | 13.32 | 13.73 | 16.85 | 14.56 |
| Statistical Parameters | 3-Step u′,v′ Circle | 5-Step u′,v′ Circle | Nominal CCT LEDs (Outside the 5-Step u′,v′ Circle) | 7-Step Quadrangle |
|---|---|---|---|---|
| Lower quartile (Q1) | 314 | 313 | 307 | 313 |
| Upper quartile (Q3) | 326 | 325 | 322 | 324 |
| Average | 318 | 317 | 312 | 316 |
| Median | 320 | 319 | 315 | 318 |
| Minimum (non-outlier) | 298 | 298 | 286 | 298 |
| Maximum (non-outlier) | 337 | 338 | 335 | 338 |
| Minimum (with outlier) | 251 | 251 | 270 | 251 |
| Maximum (with outlier) | 337 | 338 | 335 | 338 |
| Standard deviation (SD) | 12.18 | 11.64 | 14.98 | 12.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fryc, I.; Listowski, M. Relationship Between Energy Efficiency and Color Consistency in LED Lighting. Energies 2025, 18, 4482. https://doi.org/10.3390/en18174482
Fryc I, Listowski M. Relationship Between Energy Efficiency and Color Consistency in LED Lighting. Energies. 2025; 18(17):4482. https://doi.org/10.3390/en18174482
Chicago/Turabian StyleFryc, Irena, and Maciej Listowski. 2025. "Relationship Between Energy Efficiency and Color Consistency in LED Lighting" Energies 18, no. 17: 4482. https://doi.org/10.3390/en18174482
APA StyleFryc, I., & Listowski, M. (2025). Relationship Between Energy Efficiency and Color Consistency in LED Lighting. Energies, 18(17), 4482. https://doi.org/10.3390/en18174482

