Optimizing Helium Exploration: Noble Gas Isotopes as Probes for Migration–Enrichment Processes
Abstract
1. Introduction
2. Noble Gas Isotope Tracing Theory
3. Techniques to Analyze the Noble Gases in Geological Samples
4. The Application of Noble Gas Isotope in the Study of Helium Migration and Enrichment Processes
4.1. Gas Origin Indicated by Noble Gas Isotopes
4.2. The Initial Helium Migration Process
Apatite | Hematite | Zircon | Garnet | Monazite | Ilmenite | |
---|---|---|---|---|---|---|
Closure temperature (°C) | 55–100 | 90–250 | 180–200 | 590–630 | 182–299 | 150–200 |
Temperature Range (°C) | 3He Flux (cm−2) | 4He Flux (cm−2) | Hydrogen Flux (cm−2) | Diffusion Factor D0 (cm2/s) |
---|---|---|---|---|
130–675 | 1 × 1013 | 1 × 1016 | - | 3 × 10−9 |
200–675 | 1 × 1013 | 1 × 1016 | 1 × 1017 | 9 × 10−9 |
675–750 | 1 × 1013 | 1 × 1016 | 1 × 1017 | 4 × 10−5 |
4.3. The Secondary Helium Migration and Enrichment Processes
Solubility Water/Gas | Solubility Heavy Oil/Gas | Solubility Light Oil/Gas | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mol/m3)/(mol/m3) 1 bar | (mol/m3)/(mol/m3) 1 bar | (mol/m3)/(mol/m3) 1 bar | |||||||||||||
T (°C) | He | Ne | Ar | Kr | Xe | He | Ne | Ar | Kr | Xe | He | Ne | Ar | Kr | Xe |
10 | 0.0089 | 0.0111 | 0.0407 | 0.0795 | 0.1515 | 0.0128 | 0.0111 | 0.154 | 0.477 | 1.491 | 0.0192 | 0.0236 | 0.163 | 0.504 | 2.256 |
50 | 0.0090 | 0.0096 | 0.0236 | 0.0388 | 0.0603 | 0.0211 | 0.0198 | 0.158 | 0.400 | 1.080 | 0.0269 | 0.0317 | 0.149 | 0.443 | 1.397 |
110 | 0.0125 | 0.0111 | 0.0199 | 0.0281 | 0.0394 | 0.0445 | 0.0474 | 0.165 | 0.308 | 0.666 | 0.0449 | 0.0494 | 0.130 | 0.365 | 0.681 |
170 | 0.0209 | 0.0163 | 0.0253 | 0.0326 | 0.0465 | 0.0939 | 0.1131 | 0.172 | 0.237 | 0.411 | 0.0749 | 0.0768 | 0.113 | 0.301 | 0.332 |
5. Research and Development Trends
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peterson, J.B. Mineral Commodity Summaries-Helium; United States Geological Survey: Reston, VA, USA, 2020.
- Danabalan, D.; Gluyas, J.G.; Ballentine, C.J. Encyclopedia of Petroleum Geoscience; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Hu, Z.J.; Li, J.Y. A review of helium resources and development. Nat. Gas Ind. B 2025, 12, 356–367. [Google Scholar] [CrossRef]
- Ballentine, C.J.; Burgess, R.; Marty, B. Tracing Fluid Origin, Transport and Interaction in the Crust. Rev. Mineral. Geochem. 2002, 47, 539–614. [Google Scholar] [CrossRef]
- Grove, B.S.; Walsh, T.B.; Darrah, T.H. Using radiogenic noble gases to trace the conditions of crustal fluid migration. Procedia Earth Planet. Sci. 2017, 17, 818–821. [Google Scholar] [CrossRef]
- Gibson, S.A.; Crosby, J.C.; Day, J.A.F.; Stuart, F.M.; DiNicola, L.; Riley, T.R. Systematic behaviour of 3He/4He in Earth’s continental mantle. Geochim. Cosmochim. Acta 2024, 384, 44–64. [Google Scholar] [CrossRef]
- Barry, P.H.; Lawson, M.; Meurer, W.P.; Cheng, A.; Ballentine, C.J. Noble Gases in Deepwater Oils of the U.S. Gulf of Mexico. Geochem. Geophys. Geosyst. 2018, 19, 4218–4235. [Google Scholar] [CrossRef]
- Tedesco, S.A. Geology and Production of Helium and Associated Gases; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Karolyte, R.; Warr, O.; Heerden, E.V.; Flude, S.; Lange, F.D.; Webb, S.; Ballentine, C.J.; Lollar, B.S. The role of porosity in H2/He production ratios in fracture fluids from the Witwatersrand Basin, South Africa. Chem. Geol. 2022, 595, 120788. [Google Scholar] [CrossRef]
- You, B.; Chen, J.F.; Liu, X.Q.; Xiao, H.; Li, M.J.; Peng, T. Adsorption behavior of helium in quartz slit by molecular simulation. Sci. Rep. 2024, 14, 18529. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Z.Q.; Liu, X.Q.; Xue, Z.Y.; Yue, F.; Wen, J.J.; Li, M.J.; Xue, Y. Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation. Energy 2022, 240, 122789. [Google Scholar] [CrossRef]
- Halford, D.T.; Karolytė, R.; Dellenbach, J.T.; Cathey, B.; Cathey, M.; Balentine, D.; Andreason, M.W.; Rice, G.K. Applications in utilizing soil gas geochemistry along with geological and geophysical data to construct helium exploration statistical models. Front. Earth Sci. 2024, 12, 1434785. [Google Scholar] [CrossRef]
- Porcelli, D.; Ballentine, C.J. Models for distribution of terrestrial noble gases and evolution of the atmosphere. Rev. Mineral. Geochem. 2002, 47, 411–480. [Google Scholar] [CrossRef]
- Ozima, M.; Podosek, F.A. Noble Gas Geochemistry, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Burnard, P.; Zimmermann, L.; Sano, Y. The Noble Gases as Geochemical Tracers: History and Background. In The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry; Burnard, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Ballentine, C.J.; Burnard, P.G. Production, Release and Transport of Noble Gases in the Continental Crust. Rev. Mineral. Geochem. 2002, 47, 481–538. [Google Scholar] [CrossRef]
- Holland, G.; Gilfillan, S. Application of Noble Gases to the Viability of CO2 Storage. In The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry; Burnard, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Andrews, J.N. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chem. Geol. 1985, 49, 339–351. [Google Scholar] [CrossRef]
- Hilton, D.R.; Fischer, T.P.; Marty, B. Noble Gases and Volatile Recycling at Subduction Zones. Rev. Mineral. Geochem. 2002, 47, 319–370. [Google Scholar] [CrossRef]
- Kipfer, R.; Aeschbach-Hertig, W.; Peeters, F.; Stute, M. Noble Gases in Lakes and Ground Waters. Rev. Mineral. Geochem. 2002, 47, 615–700. [Google Scholar] [CrossRef]
- Zhou, Z.; Ballentine, C.; Kipfer, R.; Schoell, M.; Thibodeaux, S. Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin, USA. Geochim. Cosmochim. Acta 2005, 69, 5413–5428. [Google Scholar] [CrossRef]
- Poreda, R.J.; Farley, K.A. Rare gases in Samoan xenoliths. Earth Planet. Sci. Lett. 1992, 113, 129–144. [Google Scholar] [CrossRef]
- Bai, Z.F.; Dong, S.Y.; Fan, Y.H.; Dong, B.; Zheng, F.; Wang, Y.C.; Song, R.C. The origin and migration mechanism of natural gas in the Yacheng Gas Field, Qiongdongnan Basin, South China Sea: Constraints from noble gas isotopes. Ore Energy Resour. Geol. 2025, 18, 100094. [Google Scholar] [CrossRef]
- Ballentine, C.J.; O’Nions, R.K. The use of natural He, Ne and Ar isotopes to study hydrocarbon-related fluid provenance, migration and mass balance in sedimentary basins. Geol. Soc. Spec. Publ. 1994, 78, 347–361. [Google Scholar] [CrossRef]
- Crovetto, R.; Fernández-Prini, R.; Japas, M.L. Solubilities of inert gases and methane in H2O and in D2O in the temperature range of 300 to 600 K. J. Chem. Phys. 1982, 76, 1077–1086. [Google Scholar] [CrossRef]
- Smith, S. Noble gas solubility in water at high temperature. Eos Trans. Am. Geophys. Union 1985, 66, 397. [Google Scholar]
- Fernández-Prini, R.; Alvarez, J.L.; Harvey, A.H. Henry’s constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures. J. Phys. Chem. Ref. Data 2003, 32, 903–916. [Google Scholar] [CrossRef]
- Danabalan, D.; Gluyas, J.G.; Macpherson, C.G.; Abraham-James, T.H.; Bluett, J.J.; Barry, P.H.; Ballentine, C.J. The principles of helium exploration. Pet. Geosci. 2022, 28, petgeo2021-029. [Google Scholar] [CrossRef]
- O’Nions, R.K.; Ballentine, C.J. Rare gas studies of basin scale fluid movement. Philos. Trans. R. Soc. Lond. A 1993, 344, 141–156. [Google Scholar]
- Hai, H.; Khac, H.H.; Anne, B.; James, A.S.; Julien, C.; Magali, P.; Guillaume, G. Modeling Solubility Induced Elemental Fractionation of Noble Gases in Oils. Geochim. Cosmochim. Acta 2024, 388, 127–142. [Google Scholar]
- Smith, S.P.; Kennedy, B.M. The solubility of noble gases in water and in NaCl brine. Geochim. Cosmochim. Acta 1983, 47, 503–515. [Google Scholar] [CrossRef]
- Bosch, A.; Mazor, E. Natural gas association with water and oil as depicted by atmospheric noble gases: Case studies from the southeastern Mediterranean Coastal Plain. Earth Planet. Sci. Lett. 1988, 87, 338–346. [Google Scholar] [CrossRef]
- Zaikowski, A.; Spangler, R.R. Noble gas and methane partitioning from ground water: An aid to natural gas exploration and reservoir evaluation. Geology 1990, 18, 72–74. [Google Scholar] [CrossRef]
- Cao, C.H.; Zhang, M.J.; Li, L.W.; Wang, Y.H.; Li, Z.P.; Du, L.; Holland, G.; Zhou, Z. Tracing the sources and evolution processes of shale gas by coupling stable (C, H) and noble gas isotopic compositions Cases from Weiyuan and Changning in Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2020, 78, 103304. [Google Scholar] [CrossRef]
- Zhang, M.L.; Liu, W.; Guan, L.F.; Takahata, N.; Sano, Y.; Li, Y.; Zhou, X.C.; Chen, Z.; Cao, C.H.; Zhang, L.H.; et al. First Estimates of Hydrothermal Helium Fluxes in Continental Collision Settings: Insights from the Southeast Tibetan Plateau Margin. Geophys. Res. Lett. 2022, 49, e2022GL098228. [Google Scholar] [CrossRef]
- Zhang, M.L.; Guo, Z.F.; Xu, S.; Barry, P.H.; Sano, Y.; Zhang, L.H.; Halldórsson, S.A.; Chen, A.T.; Cheng, Z.H.; Liu, C.Q.; et al. Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau. Nat. Commun. 2021, 12, 4157. [Google Scholar] [CrossRef]
- Cao, C.H.; Zhang, M.J.; Tang, Q.Y.; Yang, Y.; Lv, Z.G.; Zhang, T.W.; Chen, C.; Yang, H.; Li, L.W. Noble gas isotopic variations and geological implication of Longmaxi shale gas in Sichuan Basin, China. Mar. Pet. Geol. 2018, 89, 38–46. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.H.; Zhao, F.H.; Han, W.; Li, Y.; Wang, Y.P.; Greg, H.; Zhou, Z. Using noble gases to trace groundwater evolution and assess helium accumulation in Weihe Basin, central China. Geochim. Cosmochim. Acta 2019, 251, 229–246. [Google Scholar] [CrossRef]
- Jähne, B.; Heinz, G.; Dietrich, W. Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res.-Oceans 1987, 92, 10767–10776. [Google Scholar] [CrossRef]
- Torgersen, T.; Clarke, W.B. Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim. Cosmochim. Acta 1985, 49, 1211–1218. [Google Scholar] [CrossRef]
- Torgersen, T. Terrestrial helium degassing fluxes and the atmospheric helium budget: Implications with respect to the degassing processes of continental crust. Chem. Geol. Isot. Geosci. Sect. 1989, 79, 1–14. [Google Scholar] [CrossRef]
- Pinti, D.L.; Marty, B. Noble gases in crude oils from the Paris Basin, France: Implications for the origin of fluids and constraints on oil-water-gas interactions. Geochim. Cosmochim. Acta 1995, 59, 3389–3404. [Google Scholar] [CrossRef]
- Ballentine, C.J.; O’Nions, R.K.; Oxburgh, E.R.; Horvath, F.; Deak, J. Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. Earth Planet. Sci. Lett. 1991, 105, 229–246. [Google Scholar] [CrossRef]
- Lippmann, J.; Stute, M.; Torgersen, T.; Moser, D.P.; Hall, J.A.; Lin, L.; Borcsik, M.; Bellamy, R.E.S.; Onstott, T.C. Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa. Geochim. Cosmochim. Acta 2003, 67, 4597–4619. [Google Scholar] [CrossRef]
- Castro, M.C.; Goblet, P.; Ledoux, E.; Violette, S.; Marsily, G.D. Noble gases as natural tracers of water circulation in the Paris Basin: 2. Calibration of a groundwater flow model using noble gas isotope data. Water Resour. Res. 1998, 34, 2467–2483. [Google Scholar] [CrossRef]
- Castro, M.C.; Jambon, A.; Marsily, G.D.; Schlosser, P. Noble gases as natural tracers of water circulation in the Paris Basin: 1. Measurements and discussion of their origin and mechanisms of vertical transport in the basin. Water Resour. Res. 1998, 34, 2443–2466. [Google Scholar] [CrossRef]
- Castro, M.C.; Patriarche, D.; Goblet, P. 2-D numerical simulations of groundwater flow, heat transfer and 4He transport-Implications for the He terrestrial budget and the mantle helium-heat imbalance. Earth Planet. Sci. Lett. 2005, 237, 893–910. [Google Scholar] [CrossRef]
- Torgersen, T.; Ivey, G.N. Helium accumulation in groundwater. II: A model for the accumulation of the crustal 4He degassing flux. Geochim. Cosmochim. Acta 1985, 49, 2445–2452. [Google Scholar] [CrossRef]
- Shuster, D.L.; Farley, K.A. 4He/3He thermochronometry. Earth Planet. Sci. Lett. 2003, 217, 1–17. [Google Scholar] [CrossRef]
- Farley, K.A. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. J. Geophys. Res. 2000, 105, 2903–2914. [Google Scholar] [CrossRef]
- Reiners, P.W.; Farley, K.A.; Hickes, H.J. He diffusion and (U-Th)/He thermochronometry of zircon: Initial results from Fish Canyon Tuff and Gold Butte, Nevada. Tectonophysics 2002, 349, 297–308. [Google Scholar] [CrossRef]
- Reiners, P.W.; Farley, K.A. Helium diffusion and (U-Th)/He thermochronometry of titanite. Geochim. Cosmochim. Acta 1999, 63, 3845–3859. [Google Scholar] [CrossRef]
- Stockli, D.A.; Farley, K.A. Empirical constraints on the titanite (U-Th)/He partial retention zone from the KTB drill hole. Chem. Geol. 2004, 207, 223–236. [Google Scholar] [CrossRef]
- Frick, U.; Becker, R.H.; Pepin, R.O. Solar wind record in the lunar regolith-Nitrogen and noble gases. In Proceedings of the 18th Lunar and Planetary Science Conference, Houston, TX, USA, 14–18 March 1988; pp. 87–120. [Google Scholar]
- Frick, U.; Pepin, R.O. Microanalysis of nitrogen isotope abundances: Association of nitrogen with noble gas carriers in Allende. Earth Planet. Sci. Lett. 1981, 56, 64–81. [Google Scholar] [CrossRef]
- Nier, A.O.; Schlutter, D.J. Extraction of helium from individual IDPs and lunar grains by pulse heating. Meteoritics 1992, 27, 268. [Google Scholar] [CrossRef]
- Lippolt, H.J.; Leitz, M.; Wernicke, R.S.; Hagedorn, B. (Uranium+thorium)/helium dating of apatite: Experience with samples from different geochemical environments. Chem. Geol. 1994, 112, 179–191. [Google Scholar] [CrossRef]
- Wolf, R.A.; Farley, K.A.; Silver, L.T. Helium diffusion and low-temperature thermochronometry of apatite. Geochim. Cosmochim. Acta 1996, 60, 4231–4240. [Google Scholar] [CrossRef]
- Bähr, R.; Lippolt, H.J.; Wernicke, R.S. Temperature-induced 4He degassing of specularite and botryoidal hematite: A 4He retentivity study. J. Geophys. Res. 1994, 99, 17695–17707. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Watson, E.B.; Thomas, J.B. Diffusion of helium in zircon and apatite. Chem. Geol. 2009, 268, 155–166. [Google Scholar] [CrossRef]
- Dunai, T.J.; Roselieb, K. Sorption and diffusion of helium in garnet: Implications for volatile tracing and dating. Earth Planet. Sci. Lett. 1996, 139, 411–421. [Google Scholar] [CrossRef]
- Boyce, J.W.; Hodges, K.V.; Olszewski, W.J.; Jercinovic, M.J. He diffusion in monazite: Implications for (U-Th)/He thermochronometry. Geochem. Geophys. Geosyst. 2005, 6, Q12004. [Google Scholar] [CrossRef]
- Martel, D.J.; O’Nions, R.K.; Hilton, D.R.; Oxburgh, E.R. The role of element distribution in production and release of radiogenic helium: The Carnmenellis Granite, southwest England. Chem. Geol. 1990, 88, 207–221. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Wu, K.L.; Chen, Z.X.; Yu, X.R.; Li, J.; Yang, S.; Hui, G.; Yang, M. Gas storage and transport in porous media: From shale gas to helium-3. Planet Space Sci. 2021, 204, 105283. [Google Scholar] [CrossRef]
- Li, Y.H.; Zhang, W.; Wang, L.; Zhao, F.H.; Han, W.; Chen, G.C. Henry’s law and accumulation of weak source for crust-derived helium: A case study of Weihe Basin, China. J. Nat. Gas Geosci. 2017, 2, 333–339. [Google Scholar] [CrossRef]
- Danabalan, D. Helium: Exploration Methodology for a Strategic Resource. Ph.D. Thesis, Durham University, Durham, UK, 2017. [Google Scholar]
- Mtilia, K.M.; Byrne, D.J.; Tyne, R.L.; Kazimoto, E.O.; Kimani, C.N.; Kasanzu, C.H.; Hillegonds, D.J.; Ballentine, C.J.; Barry, P.H. The origin of high helium concentrations in the gas fields of southwestern Tanzania. Chem. Geol. 2021, 585, 120542. [Google Scholar] [CrossRef]
- Takahata, N.; Sano, Y. Helium flux from a sedimentary basin. Appl. Radiat. Isot. 2000, 52, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.H. Applications of Near-Critical Dilute-Solution Thermodynamics. Ind. Eng. Chem. Res. 1998, 37, 3080–3088. [Google Scholar] [CrossRef]
- Kharaka, Y.K.; Specht, D.J. The solubility of noble gases in crude oil at 25–100 °C. Appl. Geochem. 1988, 3, 137–144. [Google Scholar] [CrossRef]
- Byrne, D.J.; Barry, P.H.; Lawson, M.; Ballentine, C.J. The use of noble gas isotopes to constrain subsurface fluid flow and hydrocarbon migration in the East Texas Basin. Geochim. Cosmochim. Acta 2020, 268, 186–208. [Google Scholar] [CrossRef]
- Cao, C.H.; Li, L.W.; Du, L.; Wang, Y.H.; He, J. The Use of Noble Gas Isotopes in Detecting Methane Contamination of Groundwater in Shale Gas Development Areas: An Overview of Technology and Methods. Anal. Sci. 2020, 36, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Halford, D.T. Isotopic Analyses of Helium from Wells Located in the Four Corners Area, Southwestern, USA. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 2018. [Google Scholar]
- Darrah, T.H.; Vengosh, A.; Jackson, R.B.; Warner, N.R.; Poreda, R.J. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales. Proc. Natl. Acad. Sci. USA 2014, 111, 14076–14081. [Google Scholar] [CrossRef]
3He/4He | 40Ar/36Ar | 4He/20Ne | 4He/40Ar | |
---|---|---|---|---|
Atmosphere | 1.4 × 10−6 | 295.6 | 0.318 | 5.8 × 10−3 |
Crust | 10~10−8 | >295.6 | n × 108 | >20 |
Upper mantle | 1.2 × 10−8 | ~104 | >104 | ~2 |
Lower mantle | (3~5) × 10−5 | ~400 | >104 | |
Solar system | 3 × 104 | ≤1.4 × 10−3 |
Lower Crust | Middle Crust | Upper Crust | |
---|---|---|---|
Pth | 0.8 | 0.8 | 0.8 |
U (α,n) neutrons/g/yr | 2.5 × 10−1 | 1.95 | 3.58 |
Th (α,n) neutrons/g/yr | 6.98 × 10−1 | 3.42 | 6.25 |
Uf neutrons/g/yr | 9.58 × 10−2 | 7.66 × 10−1 | 1.34 |
F6Li | 6.99 × 10−3 | 8.05 × 10−3 | 2.09 × 10−2 |
3He atoms/g/yr | 5.84 × 10−3 | 3.95 × 10−2 | 1.87 × 10−1 |
4He atoms/g/yr | 1.57 × 106 | 9.89 × 106 | 1.73 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, C.; Li, L.; Li, Z.; Zhao, H. Optimizing Helium Exploration: Noble Gas Isotopes as Probes for Migration–Enrichment Processes. Energies 2025, 18, 4218. https://doi.org/10.3390/en18164218
Cao C, Li L, Li Z, Zhao H. Optimizing Helium Exploration: Noble Gas Isotopes as Probes for Migration–Enrichment Processes. Energies. 2025; 18(16):4218. https://doi.org/10.3390/en18164218
Chicago/Turabian StyleCao, Chunhui, Liwu Li, Zhongping Li, and Huanhuan Zhao. 2025. "Optimizing Helium Exploration: Noble Gas Isotopes as Probes for Migration–Enrichment Processes" Energies 18, no. 16: 4218. https://doi.org/10.3390/en18164218
APA StyleCao, C., Li, L., Li, Z., & Zhao, H. (2025). Optimizing Helium Exploration: Noble Gas Isotopes as Probes for Migration–Enrichment Processes. Energies, 18(16), 4218. https://doi.org/10.3390/en18164218