Industrial Waste Heat Utilization in the European Union—An Engineering-Centric Review
Abstract
:1. Introduction
- Energy recycling within the process;
- Waste heat recovery (WHR) for the purposes of other on-site processes;
- Electricity generation (combined heat and power installations, thermoelectric generation);
- Building/district heating systems.
- Group 3: the environmental impact of the working fluids [24] and their degradation at higher temperatures [25] may prove to be problematic, higher exergy losses [26] and low conversion efficiencies of conventional thermoelectric materials [27] have often been reported, and some technologies are still under development and are largely unproven (thus risky and unattractive to, e.g., shareholders);
- All groups: long(er) payback periods may discourage the investors [31].
2. Waste Heat Stream Temperature
3. Waste Heat Potential
- Theoretical and physical potential;
- Theoretical technical potential;
- Applicable technical potential;
- Economic (i.e., feasible) potential.
- Temperature level or range (incl. to what temperature the stream can be cooled);
- Composition, physical properties, fouling propensity, corrosivity, and whether the condensation of stream components could be an issue;
- Mass flow rate;
- Availability (year-round, seasonal, only specific days or parts of days, etc.).
- Is the stream temperature sufficient for the intended purpose(s)?
- Is the amount of heat available from the stream sufficient, or would an additional heat source be needed?
- Is the distance between the heat source and the heat sink sufficiently small to make heat recovery possible?
- Is there a suitable heat recovery technology? Is there sufficient space for the additional equipment within the plant?
- Would the payback period be acceptable? That is, would the cost of the necessary technology (and the connecting pipeline, if needed) be reasonable compared to the yearly financial savings due to waste heat recovery?
- Would the implementation of the selected waste heat recovery technology bring measurable environmental benefits?
4. Factors Limiting the Full Utilization of Waste Heat
- Insufficient information and know-how available to the prospective technology operators (see also [49]);
- The risks associated with new and unproven technology (see also [36], where organizational barriers stemming from the involvement of stakeholders and their likely resistance to unproven technologies and financial risks are highlighted);
- The requirements imposed by legislation;
- High investment and operating costs, long payback periods (due to comparably lower primary energy prices, etc.), and, in many cases, relatively low internal rates of return (see also [36]);
- Insufficient financial incentives and subsidies;
- Space limitations with regard to the sizes of the necessary technologies;
- Insufficient infrastructure;
- Limitations of the production process (see also [50], where this point is discussed in detail in the context of harsh environments for which specialized waste heat recovery equipment may be required) and the risk of production process disruptions.
5. Industrial Sources of Waste Heat
6. Technologies and Equipment Applicable to Waste Heat Recovery
- Direct recovery (e.g., using heat exchangers or thermal energy storage);
- Transformation to a higher temperature level (e.g., via heat pumps);
- Transformation to a lower temperature level (i.e., cooling via absorption or adsorption chillers etc.);
- Transformation to electricity (e.g., through an organic Rankine cycle).
6.1. Regenerative and Recuperative Heat Exchangers
6.2. Waste Heat Boilers
6.3. Regenerative and Recuperative Burners
6.4. Heat Pipes
6.5. Heat Pumps
6.6. Thermodynamic Cycles
6.7. Thermal Energy Storage
7. Case Studies
8. Perspective and Outlook
- The ever-widening range of and improvements made to waste heat recovery technologies and equipment;
- Economic benefits;
- Changes in environmental legislation;
- The availability of waste heat.
9. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Johnson, I.; Choate, W.; Davidson, A. Waste Heat Recovery. Technology and Opportunities in U.S. Industry; U.S. Department of Energy, Office of Scientific and Technical Information (OSTI): Oak Ridge, TN, USA, 2008. [Google Scholar]
- Jouhara, H.; Khordehgah, N.; Almahmoud, S.; Delpech, B.; Chauhan, A.; Tassou, S.A. Waste Heat Recovery Technologies and Applications. Therm. Sci. Eng. Prog. 2018, 6, 268–289. [Google Scholar] [CrossRef]
- Grönkvist, S.; Dahlberg, L.; Lundberg, H.; Martinsson, C.; Stenkvist, M. Analys av Metoder för att öka Incitament för Spillvärmesamarbete [Analysis of Methods to Increase the Incentives for Excess Heat Use]; Swedish Energy Agency Eskilstuna: Eskilstuna, Sweden, 2008. [Google Scholar]
- Bendig, M.; Maréchal, F.; Favrat, D. Defining “Waste Heat” for Industrial Processes. Appl. Therm. Eng. 2013, 61, 134–142. [Google Scholar] [CrossRef]
- Lu, P.; Liang, Z.; Luo, X.; Xia, Y.; Wang, J.; Chen, K.; Liang, Y.; Chen, J.; Yang, Z.; He, J.; et al. Design and Optimization of Organic Rankine Cycle Based on Heat Transfer Enhancement and Novel Heat Exchanger: A Review. Energies 2023, 16, 1380. [Google Scholar] [CrossRef]
- Hnat, J.G.; Coles, W.F. A Feasibility Assessment of Cogeneration from a Regenerative Glass Furnace. IEEE Trans. Ind. Applicat. 1985, IA-21, 1064–1069. [Google Scholar] [CrossRef]
- Forman, C.; Muritala, I.K.; Pardemann, R.; Meyer, B. Estimating the Global Waste Heat Potential. Renew. Sustain. Energy Rev. 2016, 57, 1568–1579. [Google Scholar] [CrossRef]
- Panayiotou, G.P.; Bianchi, G.; Georgiou, G.; Aresti, L.; Argyrou, M.; Agathokleous, R.; Tsamos, K.M.; Tassou, S.A.; Florides, G.; Kalogirou, S.; et al. Preliminary Assessment of Waste Heat Potential in Major European Industries. Energy Procedia 2017, 123, 335–345. [Google Scholar] [CrossRef]
- Varga, Z.; Palotai, B. Comparison of Low Temperature Waste Heat Recovery Methods. Energy 2017, 137, 1286–1292. [Google Scholar] [CrossRef]
- Viswanathan, V.V.; Davies, R.W.; Holbery, J. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions; U.S. Department of Energy, Office of Scientific and Technical Information (OSTI): Oak Ridge, TN, USA, 2006. [Google Scholar]
- Bianchi, G.; Panayiotou, G.P.; Aresti, L.; Kalogirou, S.A.; Florides, G.A.; Tsamos, K.; Tassou, S.A.; Christodoulides, P. Estimating the Waste Heat Recovery in the European Union Industry. Energ. Ecol. Environ. 2019, 4, 211–221. [Google Scholar] [CrossRef]
- Agathokleous, R.; Bianchi, G.; Panayiotou, G.; Aresti, L.; Argyrou, M.C.; Georgiou, G.S.; Tassou, S.A.; Jouhara, H.; Kalogirou, S.A.; Florides, G.A.; et al. Waste Heat Recovery in the EU Industry and Proposed New Technologies. Energy Procedia 2019, 161, 489–496. [Google Scholar] [CrossRef]
- Pashchenko, D. Natural Gas Reforming in Thermochemical Waste-Heat Recuperation Systems: A Review. Energy 2022, 251, 123854. [Google Scholar] [CrossRef]
- Arzbaecher, C.; Fouche, E.; Parmenter, K. Industrial Waste-Heat Recovery: Benefits and Recent Advancements in Technology and Applications. In Proceedings of the ACEEE Summer Study on Energy Efficiency in Industry, Washington, DC, USA, 25 July 2007; pp. 2:1–2:13. Available online: https://www.eceee.org/library/conference_proceedings/ACEEE_industry/2007/Panel_2/p2_1/ (accessed on 27 March 2024).
- Energy Statistics—An Overview. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview#Final_energy_consumption (accessed on 1 February 2024).
- Papapetrou, M.; Kosmadakis, G.; Cipollina, A.; La Commare, U.; Micale, G. Industrial Waste Heat: Estimation of the Technically Available Resource in the EU per Industrial Sector, Temperature Level and Country. Appl. Therm. Eng. 2018, 138, 207–216. [Google Scholar] [CrossRef]
- Daniarta, S.; Sowa, D.; Błasiak, P.; Imre, A.R.; Kolasiński, P. Techno-Economic Survey of Enhancing Power-to-Methane Efficiency via Waste Heat Recovery from Electrolysis and Biomethanation. Renew. Sustain. Energy Rev. 2024, 194, 114301. [Google Scholar] [CrossRef]
- Luberti, M.; Gowans, R.; Finn, P.; Santori, G. An Estimate of the Ultralow Waste Heat Available in the European Union. Energy 2022, 238, 121967. [Google Scholar] [CrossRef]
- Crook, A.W. Profiting from Low-Grade Heat: Thermodynamic Cycles for Low-Temperature Heat Sources; IET: Stevenage, UK, 1994; ISBN 978-0-85296-835-2. [Google Scholar]
- Jegla, Z.; Freisleben, V. Practical Energy Retrofit of Heat Exchanger Network Not Containing Utility Path. Energies 2020, 13, 2711. [Google Scholar] [CrossRef]
- Oyedepo, S.O.; Fakeye, B.A. Waste Heat Recovery Technologies: Pathway to Sustainable Energy Development. J. Therm. Eng. 2021, 7, 324–348. [Google Scholar] [CrossRef]
- Christodoulides, P.; Agathokleous, R.; Aresti, L.; Kalogirou, S.A.; Tassou, S.A.; Florides, G.A. Waste Heat Recovery Technologies Revisited with Emphasis on New Solutions, Including Heat Pipes, and Case Studies. Energies 2022, 15, 384. [Google Scholar] [CrossRef]
- Ebara, R.; Tanaka, F.; Kawasaki, M. Sulfuric Acid Dew Point Corrosion in Waste Heat Boiler Tube for Copper Smelting Furnace. Eng. Fail. Anal. 2013, 33, 29–36. [Google Scholar] [CrossRef]
- Tian, H.; Liu, P.; Shu, G. Challenges and Opportunities of Rankine Cycle for Waste Heat Recovery from Internal Combustion Engine. Prog. Energy Combust. Sci. 2021, 84, 100906. [Google Scholar] [CrossRef]
- Jiménez-Arreola, M.; Pili, R.; Dal Magro, F.; Wieland, C.; Rajoo, S.; Romagnoli, A. Thermal Power Fluctuations in Waste Heat to Power Systems: An Overview on the Challenges and Current Solutions. Appl. Therm. Eng. 2018, 134, 576–584. [Google Scholar] [CrossRef]
- Nyakuma, B.B.; Mahyon, N.I.; Chiong, M.S.; Rajoo, S.; Pesiridis, A.; Wong, S.L.; Martinez-Botas, R. Recovery and Utilisation of Waste Heat from Flue/Exhaust Gases: A Bibliometric Analysis (2010–2022). Environ. Sci. Pollut. Res. 2023, 30, 90522–90546. [Google Scholar] [CrossRef]
- Manna, N. Study on Piezoelectric Elements for Energy Harvesting. In Proceedings of the 2014 1st International Conference on Non Conventional Energy (ICONCE 2014), Kalyani, India, 16–17 January 2014; pp. 334–338. [Google Scholar]
- Pakere, I.; Blumberga, D.; Volkova, A.; Lepiksaar, K.; Zirne, A. Valorisation of Waste Heat in Existing and Future District Heating Systems. Energies 2023, 16, 6796. [Google Scholar] [CrossRef]
- Marx, N.; Blakcori, R.; Forster, T.; Maggauer, K.; Ralf-Roman, S. Risk Assessment in District Heating: Evaluating the Economic Risks of Inter-Regional Heat Transfer Networks with Regards to Uncertainties of Energy Prices and Waste Heat Availability Using Monte Carlo Simulations. Smart Energy 2023, 12, 100119. [Google Scholar] [CrossRef]
- Sasidharan, M.; Mohd Sabri, M.F.; Wan Muhammad Hatta, S.F.; Ibrahim, S. A Review on the Progress and Development of Thermoelectric Air Conditioning System. Int. J. Green Energy 2024, 21, 283–299. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Li, X.-P.; Li, Y.-R.; Wu, C.-M. Payback Period Estimation and Parameter Optimization of Subcritical Organic Rankine Cycle System for Waste Heat Recovery. Energy 2015, 88, 734–745. [Google Scholar] [CrossRef]
- Ji, D.; Cai, H.; Ye, Z.; Luo, D.; Wu, G.; Romagnoli, A. Comparison between Thermoelectric Generator and Organic Rankine Cycle for Low to Medium Temperature Heat Source: A Techno-Economic Analysis. Sustain. Energy Technol. Assess. 2023, 55, 102914. [Google Scholar] [CrossRef]
- Law, R.; Harvey, A.; Reay, D. Opportunities for Low-Grade Heat Recovery in the UK Food Processing Industry. Appl. Therm. Eng. 2013, 53, 188–196. [Google Scholar] [CrossRef]
- Ji, D.; Liu, G.; Romagnoli, A.; Rajoo, S.; Besagni, G.; Markides, C.N. Low-Grade Thermal Energy Utilization: Technologies and Applications. Appl. Therm. Eng. 2024, 244, 122618. [Google Scholar] [CrossRef]
- Ammar, Y.; Joyce, S.; Norman, R.; Wang, Y.; Roskilly, A.P. Low Grade Thermal Energy Sources and Uses from the Process Industry in the UK. Appl. Energy 2012, 89, 3–20. [Google Scholar] [CrossRef]
- Benedetti, M.; Dadi, D.; Giordano, L.; Introna, V.; Lapenna, P.E.; Santolamazza, A. Design of a Database of Case Studies and Technologies to Increase the Diffusion of Low-Temperature Waste Heat Recovery in the Industrial Sector. Sustainability 2021, 13, 5223. [Google Scholar] [CrossRef]
- Bonilla-Campos, I.; Nieto, N.; del Portillo-Valdes, L.; Egilegor, B.; Manzanedo, J.; Gaztañaga, H. Energy Efficiency Assessment: Process Modelling and Waste Heat Recovery Analysis. Energy Convers. Manag. 2019, 196, 1180–1192. [Google Scholar] [CrossRef]
- Brückner, S.; Liu, S.; Miró, L.; Radspieler, M.; Cabeza, L.F.; Lävemann, E. Industrial Waste Heat Recovery Technologies: An Economic Analysis of Heat Transformation Technologies. Appl. Energy 2015, 151, 157–167. [Google Scholar] [CrossRef]
- Haddad, C.; Périlhon, C.; Danlos, A.; François, M.-X.; Descombes, G. Some Efficient Solutions to Recover Low and Medium Waste Heat: Competitiveness of the Thermoacoustic Technology. Energy Procedia 2014, 50, 1056–1069. [Google Scholar] [CrossRef]
- Loni, R.; Najafi, G.; Bellos, E.; Rajaee, F.; Said, Z.; Mazlan, M. A Review of Industrial Waste Heat Recovery System for Power Generation with Organic Rankine Cycle: Recent Challenges and Future Outlook. J. Clean. Prod. 2021, 287, 125070. [Google Scholar] [CrossRef]
- Pehnt, M.; Bödeker, J.; Arens, M.; Jochem, E.; Idrissova, F. Industrial Waste Heat—Tapping into a Neglected Efficiency Potential. In Proceedings of the ECEEE 2011 Summer Study, Belambra Presqu’ile de Giens, France, 6–11 June 2011; pp. 691–700. [Google Scholar]
- Sollesnes, G.; Helgerud, H.E. Potensialstudie for Utnyttelse av Spillvarme fra Norsk Industri [Survey of Potentials for Exploitation of Waste Heat from Norwegian Industry]; Norsk Energi, NEPAS: Oslo, Norway, 2009. [Google Scholar]
- Blesl, M.; Kempe, S.; Ohl, M.; Fahl, U.; König, A.; Jenssen, T.; Eltrop, L. Wärmeatlas Baden-Württemberg—Erstellung eines Leitfadens und Umsetzung für Modellregionen [Baden Württemberg Heat Atlas—Preparation of the Guidelines and Their Implementation for Exemplary Regions]; University of Stuttgart: Stuttgart, Germany, 2009; p. 167. [Google Scholar]
- Pérez-Lombard, L.; Ortiz, J.; Velázquez, D. Revisiting Energy Efficiency Fundamentals. Energy Effic. 2012, 6, 239–254. [Google Scholar] [CrossRef]
- Miró, L.; Brückner, S.; Cabeza, L.F. Mapping and Discussing Industrial Waste Heat (IWH) Potentials for Different Countries. Renew. Sustain. Energy Rev. 2015, 51, 847–855. [Google Scholar] [CrossRef]
- Thekdi, A.; Nimbalkar, S.U. Industrial Waste Heat Recovery—Potential Applications, Available Technologies and Crosscutting R&D Opportunities; U.S. Department of Energy, Office of Scientific and Technical Information (OSTI): Oak Ridge, TN, USA, 2015. [Google Scholar]
- Eurostat. Simplified Energy Balances (nrg_bal_s); [Data Set]; Eurostat: Luxembourg, 2024. [Google Scholar] [CrossRef]
- Christodoulides, P.; Aresti, L.; Panayiotou, G.P.; Tassou, S.; Florides, G.A. Adoption of Waste Heat Recovery Technologies: Reviewing the Relevant Barriers and Recommendations on How to Overcome Them. Oper. Res. Forum 2022, 3, 3. [Google Scholar] [CrossRef]
- Giordano, L.; Benedetti, M. A Methodology for the Identification and Characterization of Low-Temperature Waste Heat Sources and Sinks in Industrial Processes: Application in the Italian Dairy Sector. Energies 2022, 15, 155. [Google Scholar] [CrossRef]
- Vance, D.; Nimbalkar, S.; Thekdi, A.; Armstrong, K.; Wenning, T.; Cresko, J.; Jin, M. Estimation of and Barriers to Waste Heat Recovery from Harsh Environments in Industrial Processes. J. Clean. Prod. 2019, 222, 539–549. [Google Scholar] [CrossRef]
- Miró, L.; Gasia, J.; Cabeza, L.F. Thermal Energy Storage (TES) for Industrial Waste Heat (IWH) Recovery: A Review. Appl. Energy 2016, 179, 284–301. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Wang, R.Z.; Yang, C. Perspectives for Low-Temperature Waste Heat Recovery. Energy 2019, 176, 1037–1043. [Google Scholar] [CrossRef]
- Jouhara, H.; Olabi, A.G. Editorial: Industrial Waste Heat Recovery. Energy 2018, 160, 1–2. [Google Scholar] [CrossRef]
- Skop, H.; Chudnovsky, Y. Energy Efficiency and Advanced Heat Recovery Technologies. In Handbook of Thermal Science and Engineering; Kulacki, F.A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–16. ISBN 978-3-319-32003-8. [Google Scholar]
- Sun, L.; Yan, H.; Xin, K.; Tao, T. Contamination Source Identification in Water Distribution Networks Using Convolutional Neural Network. Environ. Sci. Pollut. Res. 2019, 26, 36786–36797. [Google Scholar] [CrossRef]
- Panayiotou, G.; Agathokleous, R.; Florides, G.; Christodoulides, P. Assessment of Energy Potential for Heat Recovery in the EU Industry. J. Phys. Conf. Ser. 2020, 1687, 012027. [Google Scholar] [CrossRef]
- Castro Oliveira, M.; Iten, M.; Cruz, P.L.; Monteiro, H. Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery. Energies 2020, 13, 6096. [Google Scholar] [CrossRef]
- Huang, F.; Zheng, J.; Baleynaud, J.M.; Lu, J. Heat Recovery Potentials and Technologies in Industrial Zones. J. Energy Inst. 2017, 90, 951–961. [Google Scholar] [CrossRef]
- Garofalo, E.; Bevione, M.; Cecchini, L.; Mattiussi, F.; Chiolerio, A. Waste Heat to Power: Technologies, Current Applications, and Future Potential. Energy Technol. 2020, 8, 2000413. [Google Scholar] [CrossRef]
- Elkoumy, M.M.; El-Anwar, M.; Fathy, A.M.; Megahed, G.M.; El-Mahallawi, I.; Ahmed, H. Simulation of EAF Refining Stage. Ain Shams Eng. J. 2018, 9, 2781–2793. [Google Scholar] [CrossRef]
- Pashchenko, D.; Nikitin, M. Forging Furnace with Thermochemical Waste-Heat Recuperation by Natural Gas Reforming: Fuel Saving and Heat Balance. Int. J. Hydrogen Energy 2021, 46, 100–109. [Google Scholar] [CrossRef]
- Fruehan, R.J.; Fortini, O.; Paxton, H.W.; Brindle, R. Theoretical Minimum Energies to Produce Steel for Selected Conditions; U.S. Department of Energy, Office of Scientific and Technical Information (OSTI): Oak Ridge, TN, USA, 2000. [Google Scholar]
- Rattner, A.S.; Garimella, S. Energy Harvesting, Reuse and Upgrade to Reduce Primary Energy Usage in the USA. Energy 2011, 36, 6172–6183. [Google Scholar] [CrossRef]
- Fluid Catalytic Cracking Handbook, 3rd ed.; Sadeghbeigi, R. (Ed.) Butterworth-Heinemann: Oxford, UK, 2012; ISBN 978-0-12-386965-4. [Google Scholar]
- Nagy, R.; Mečiarová, Ľ.; Vilčeková, S.; Krídlová Burdová, E.; Košičanová, D. Investigation of a Ventilation System for Energy Efficiency and Indoor Environmental Quality in a Renovated Historical Building: A Case Study. Int. J. Environ. Res. Public Health 2019, 16, 4133. [Google Scholar] [CrossRef]
- Navarro-Esbrí, J.; Amat-Albuixech, M.; Molés, F.; Mateu-Royo, C.; Mota-Babiloni, A.; Collado, R. HCFO-1224yd(Z) as HFC-245fa Drop-in Alternative in Low Temperature ORC Systems: Experimental Analysis in a Waste Heat Recovery Real Facility. Energy 2020, 193, 116701. [Google Scholar] [CrossRef]
- Zhai, H.; An, Q.; Shi, L.; Lemort, V.; Quoilin, S. Categorization and Analysis of Heat Sources for Organic Rankine Cycle Systems. Renew. Sustain. Energy Rev. 2016, 64, 790–805. [Google Scholar] [CrossRef]
- Veselovskaya, J.V.; Tokarev, M.M.; Aristov, Y.I. Novel Ammonia Sorbents “Porous Matrix Modified by Active Salt” for Adsorptive Heat Transformation: 1. Barium Chloride in Various Matrices. Appl. Therm. Eng. 2010, 30, 584–589. [Google Scholar] [CrossRef]
- Fen, H.; van den Berg, R. Improvement Opportunities for IGCC*. In Integrated Gasification Combined Cycle (IGCC) Technologies; Wang, T., Stiegel, G., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 833–846. ISBN 978-0-08-100167-7. [Google Scholar]
- Zhang, Q.; Zhao, X.; Lu, H.; Ni, T.; Li, Y. Waste Energy Recovery and Energy Efficiency Improvement in China’s Iron and Steel Industry. Appl. Energy 2017, 191, 502–520. [Google Scholar] [CrossRef]
- Brueckner, S.; Miró, L.; Cabeza, L.F.; Pehnt, M.; Laevemann, E. Methods to Estimate the Industrial Waste Heat Potential of Regions—A Categorization and Literature Review. Renew. Sustain. Energy Rev. 2014, 38, 164–171. [Google Scholar] [CrossRef]
- Simeone, A.; Luo, Y.; Woolley, E.; Rahimifard, S.; Boër, C. A Decision Support System for Waste Heat Recovery in Manufacturing. CIRP Ann. 2016, 65, 21–24. [Google Scholar] [CrossRef]
- Ling-Chin, J.; Bao, H.; Ma, Z.; Taylor, W.; Paul Roskilly, A. State-of-the-Art Technologies on Low-Grade Heat Recovery and Utilization in Industry. In Energy Conversion—Current Technologies and Future Trends; Al-Bahadly, I.H., Ed.; IntechOpen: Rijeka, Croatia, 2019; ISBN 978-1-78984-904-2. [Google Scholar]
- Chan, C.W.; Ling-Chin, J.; Roskilly, A.P. A Review of Chemical Heat Pumps, Thermodynamic Cycles and Thermal Energy Storage Technologies for Low Grade Heat Utilisation. Appl. Therm. Eng. 2013, 50, 1257–1273. [Google Scholar] [CrossRef]
- Kwak, D.-H.; Binns, M.; Kim, J.-K. Integrated Design and Optimization of Technologies for Utilizing Low Grade Heat in Process Industries. Appl. Energy 2014, 131, 307–322. [Google Scholar] [CrossRef]
- Kumar, A.; Rakshit, D. A Critical Review on Waste Heat Recovery Utilization with Special Focus on Organic Rankine Cycle Applications. Clean. Eng. Technol. 2021, 5, 100292. [Google Scholar] [CrossRef]
- Chowdhury, J.I.; Hu, Y.; Haltas, I.; Balta-Ozkan, N.; Matthew, G., Jr.; Varga, L. Reducing Industrial Energy Demand in the UK: A Review of Energy Efficiency Technologies and Energy Saving Potential in Selected Sectors. Renew. Sustain. Energy Rev. 2018, 94, 1153–1178. [Google Scholar] [CrossRef]
- Leppänen, T.; Romka, R.; Tervonen, P. Utilization of Data Center Waste Heat in Northern Ostrobothnia. Teh. Glas. 2020, 14, 312–317. [Google Scholar] [CrossRef]
- Ononogbo, C.; Nwosu, E.C.; Nwakuba, N.R.; Nwaji, G.N.; Nwufo, O.C.; Chukwuezie, O.C.; Chukwu, M.M.; Anyanwu, E.E. Opportunities of Waste Heat Recovery from Various Sources: Review of Technologies and Implementation. Heliyon 2023, 9, e13590. [Google Scholar] [CrossRef]
- Narendra Babu, N.; Kamath, H.C. Materials Used in Heat Pipe. Mater. Today Proc. 2015, 2, 1469–1478. [Google Scholar] [CrossRef]
- Faghri, A. Heat Pipes: Review, Opportunities and Challenges. Front. Heat Pipes 2014, 5, 1–48. [Google Scholar] [CrossRef]
- Thekdi, A.; Nimbalkar, S.; Sundaramoorthy, S.; Armstrong, K.; Taylor, A.; Gritton, J.; Wenning, T.; Cresko, J. Technology Assessment on Low-Temperature Waste Heat Recovery in Industry; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2021. [Google Scholar]
- Nandhini, R.; Sivaprakash, B.; Rajamohan, N. Waste Heat Recovery at Low Temperature from Heat Pumps, Power Cycles and Integrated Systems—Review on System Performance and Environmental Perspectives. Sustain. Energy Technol. Assess. 2022, 52, 102214. [Google Scholar] [CrossRef]
- Pili, R.; García Martínez, L.; Wieland, C.; Spliethoff, H. Techno-Economic Potential of Waste Heat Recovery from German Energy-Intensive Industry with Organic Rankine Cycle Technology. Renew. Sustain. Energy Rev. 2020, 134, 110324. [Google Scholar] [CrossRef]
- Law, R.; Harvey, A.; Reay, D. A Knowledge-Based System for Low-Grade Waste Heat Recovery in the Process Industries. Appl. Therm. Eng. 2016, 94, 590–599. [Google Scholar] [CrossRef]
- Singh, S.P.; Nagori, A. Refrigeration Waste Heat Utilization for Drying Applications: A Review. Int. J. Green Energy 2020, 17, 697–721. [Google Scholar] [CrossRef]
- Zhang, X.; He, M.; Zhang, Y. A Review of Research on the Kalina Cycle. Renew. Sustain. Energy Rev. 2012, 16, 5309–5318. [Google Scholar] [CrossRef]
- Khankari, G.; Karmakar, S. A Novel Solar Assisted Kalina Cycle System for Waste Heat Utilization in Thermal Power Plants. Int. J. Energy Res. 2021, 45, 17146–17158. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, N.; Yang, S. Thermodynamic and Parametric Analysis of a Coupled LiBr/H2O Absorption Chiller/Kalina Cycle for Cascade Utilization of Low-Grade Waste Heat. Energy Convers. Manag. 2020, 205, 112370. [Google Scholar] [CrossRef]
- Karellas, S.; Leontaritis, A.-D.; Panousis, G.; Bellos, E.; Kakaras, E. Energetic and Exergetic Analysis of Waste Heat Recovery Systems in the Cement Industry. Energy 2013, 58, 147–156. [Google Scholar] [CrossRef]
- Yuan, X.; Liang, Y.; Hu, X.; Xu, Y.; Chen, Y.; Kosonen, R. Waste Heat Recoveries in Data Centers: A Review. Renew. Sustain. Energy Rev. 2023, 188, 113777. [Google Scholar] [CrossRef]
- Marchionni, M.; Bianchi, G.; Tassou, S. Review of Supercritical Carbon Dioxide (sCO2) Technologies for High-Grade Waste Heat to Power Conversion. SN Appl. Sci. 2020, 2, 611. [Google Scholar] [CrossRef]
- Quoilin, S.; Broek, M.V.D.; Declaye, S.; Dewallef, P.; Lemort, V. Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems. Renew. Sustain. Energy Rev. 2013, 22, 168–186. [Google Scholar] [CrossRef]
- Konur, O.; Colpan, C.O.; Saatcioglu, O.Y. A Comprehensive Review on Organic Rankine Cycle Systems Used as Waste Heat Recovery Technologies for Marine Applications. Energy Sources A: Recovery Util. Environ. Eff. 2022, 44, 4083–4122. [Google Scholar] [CrossRef]
- Kajurek, J.; Rusowicz, A.; Grzebielec, A.; Bujalski, W.; Futyma, K.; Rudowicz, Z. Selection of Refrigerants for a Modified Organic Rankine Cycle. Energy 2019, 168, 1–8. [Google Scholar] [CrossRef]
- Hackl, R.; Harvey, S. Applying Process Integration Methods to Target for Electricity Production from Industrial Waste Heat Using Organic Rankine Cycle (ORC) Technology. In Proceedings of the World Renewable Energy Congress 2011, Linköping, Sweden, 8–13 May 2011; pp. 1716–1723. [Google Scholar]
- Kapustenko, P.; Klemeš, J.J.; Arsenyeva, O.; Tovazhnyanskyy, L. PHE (Plate Heat Exchanger) for Condensing Duties: Recent Advances and Future Prospects. Energies 2023, 16, 524. [Google Scholar] [CrossRef]
- Arsenyeva, O.P.; Čuček, L.; Tovazhnyanskyy, L.L.; Kapustenko, P.O.; Savchenko, Y.A.; Kusakov, S.K.; Matsegora, O.I. Utilisation of Waste Heat from Exhaust Gases of Drying Process. Front. Chem. Sci. Eng. 2016, 10, 131–138. [Google Scholar] [CrossRef]
- Shih, H.; Shih, T. Utilization of Waste Heat in the Desalination Process. Desalination 2007, 204, 464–470. [Google Scholar] [CrossRef]
- Gewald, D.; Siokos, K.; Karellas, S.; Spliethoff, H. Waste Heat Recovery from a Landfill Gas-Fired Power Plant. Renew. Sustain. Energy Rev. 2012, 16, 1779–1789. [Google Scholar] [CrossRef]
- Elsaid, K.; Taha Sayed, E.; Yousef, B.A.A.; Kamal Hussien Rabaia, M.; Ali Abdelkareem, M.; Olabi, A.G. Recent Progress on the Utilization of Waste Heat for Desalination: A Review. Energy Convers. Manag. 2020, 221, 113105. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, J.; Yu, G.; Yang, R.; Wu, Z.; Hu, J.; Zhang, L.; Luo, E. A Stirling Generator with Multiple Bypass Expansion for Variable-Temperature Waste Heat Recovery. Appl. Energy 2023, 329, 120242. [Google Scholar] [CrossRef]
- Jouhara, H.; Chauhan, A.; Nannou, T.; Almahmoud, S.; Delpech, B.; Wrobel, L.C. Heat Pipe Based Systems—Advances and Applications. Energy 2017, 128, 729–754. [Google Scholar] [CrossRef]
- Arsenyeva, O.; Klemeš, J.J.; Kapustenko, P.; Fedorenko, O.; Kusakov, S.; Kobylnik, D. Plate Heat Exchanger Design for the Utilisation of Waste Heat from Exhaust Gases of Drying Process. Energy 2021, 233, 121186. [Google Scholar] [CrossRef]
- Kilkovský, B. Review of Design and Modeling of Regenerative Heat Exchangers. Energies 2020, 13, 759. [Google Scholar] [CrossRef]
- Kuppan, T. Heat Exchanger Design Handbook; Mechanical Engineering; Marcel Dekker: New York, NY, USA, 2000; ISBN 978-0-8247-9787-4. [Google Scholar]
- Jebaraj, P.; Reddy, A. Prediction of Thermal Shock of Ceramic Shells Using Fused Silica as Reinforcing Filler at Casting Conditions. In Proceedings of the National Conference on Advances in Production Technology, Bangalore, India, 7–9 February 1998; pp. 52–56. [Google Scholar]
- Akhan, H.; Eryener, D. Building Integrated Solar Air Heating with Waste Heat Utilization. Energy Convers. Manag. 2018, 157, 136–145. [Google Scholar] [CrossRef]
- Turek, V.; Bělohradský, P.; Jegla, Z. Geometry Optimization of a Gas Preheater Inlet Region—A Case Study. Chem. Eng. Trans. 2012, 29, 1339–1344. [Google Scholar]
- Fialová, D.; Jegla, Z. Analysis of Fired Equipment within the Framework of Low-Cost Modelling Systems. Energies 2019, 12, 520. [Google Scholar] [CrossRef]
- Men, Y.; Liu, X.; Zhang, T. Performance Comparison of Different Total Heat Exchangers Applied for Waste Heat Recovery. Appl. Therm. Eng. 2021, 182, 115715. [Google Scholar] [CrossRef]
- Kilkovsky, B.; Stehlik, P.; Jegla, Z.; Tovazhnyansky, L.L.; Arsenyeva, O.; Kapustenko, P.O. Heat Exchangers for Energy Recovery in Waste and Biomass to Energy Technologies—I. Energy Recovery from Flue Gas. Appl. Therm. Eng. 2014, 64, 213–223. [Google Scholar] [CrossRef]
- Men, Y.; Liu, X.; Zhang, T. A Review of Boiler Waste Heat Recovery Technologies in the Medium-Low Temperature Range. Energy 2021, 237, 121560. [Google Scholar] [CrossRef]
- Al-Rabghi, O.M.; Beirutty, M.; Akyurt, M.; Najjar, Y.; Alp, T. Recovery and Utilization of Waste Heat. Heat Recovery Syst. CHP 1993, 13, 463–470. [Google Scholar] [CrossRef]
- Suwarno, S.; Jabar I’jazurrohman, A.; Dwi Yudanto, F.; Djanali, V.S. Failure Analysis of Waste Heat Boiler Tubing Caused by a High Local Heat Flux. Eng. Fail. Anal. 2022, 136, 106147. [Google Scholar] [CrossRef]
- Deonise, D.; Ioana, A.; Paunescu, L.; Pollifroni, M.; Deonise, C.A.; Petcu, F.-S.; Canuta, I.L. Experimental Results on the Implementation and Use of Recovery Burners. EJMSE 2022, 7, 284–287. [Google Scholar] [CrossRef]
- Manatura, K.; Tangtrakul, M. A Study of Specific Energy Consumption in Reheating Furnace Using Regenerative Burners Combined with Recuperator. Silpakorn Univ. Sci. Technol. J. 2010, 4, 7–13. [Google Scholar]
- Wu, G.; Li, S.; Zhu, R.; Guo, H.; Liu, R.; Yang, X. Development and Experimental Research of a Self-Regenerative Burner. Chin. J. Eng. 2003, 25, 218–221. [Google Scholar]
- Park, B.-S.; Chung, D.-H.; Kim, W.-B.; Kim, Y. A Study on the Design of Recuperative Burner. Int. J. Energy Res. 1998, 22, 209–220. [Google Scholar] [CrossRef]
- Werner, T.C.; Yan, Y.; Karayiannis, T.; Pickert, V.; Wrobel, R.; Law, R. Medium Temperature Heat Pipes—Applications, Challenges and Future Direction. Appl. Therm. Eng. 2024, 236, 121371. [Google Scholar] [CrossRef]
- Orr, B.; Akbarzadeh, A.; Mochizuki, M.; Singh, R. A Review of Car Waste Heat Recovery Systems Utilising Thermoelectric Generators and Heat Pipes. Appl. Therm. Eng. 2016, 101, 490–495. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, C.; Guo, K.; Zhang, D.; Su, G.H.; Tian, W.; Qiu, S. A Review of Liquid Metal High Temperature Heat Pipes: Theoretical Model, Design, and Application. Int. J. Heat Mass Transf. 2023, 214, 124434. [Google Scholar] [CrossRef]
- Yang, X.; Yan, Y.Y.; Mullen, D. Recent Developments of Lightweight, High Performance Heat Pipes. Appl. Therm. Eng. 2012, 33–34, 1–14. [Google Scholar] [CrossRef]
- Chua, K.J.; Chou, S.K.; Yang, W.M. Advances in Heat Pump Systems: A Review. Appl. Energy 2010, 87, 3611–3624. [Google Scholar] [CrossRef]
- Zühlsdorf, B.; Bühler, F.; Bantle, M.; Elmegaard, B. Analysis of Technologies and Potentials for Heat Pump-Based Process Heat Supply above 150 °C. Energy Convers. Manag. X 2019, 2, 100011. [Google Scholar] [CrossRef]
- Arpagaus, C.; Bless, F.; Schiffmann, J.; Bertsch, S.S. Multi-Temperature Heat Pumps: A Literature Review. Int. J. Refrig. 2016, 69, 437–465. [Google Scholar] [CrossRef]
- Wolf, S.; Fahl, U.; Voß, A. How Heat Pumps Can Be Used to Improve Energy Efficiency of Industrial Processes. In Proceedings of the 11th IEA Heat Pump Conference 2014, Montréal, Canada, 12–16 May 2014; International Energy Agency (IEA): Paris, France, 2014. [Google Scholar]
- Frate, G.F.; Ferrari, L.; Desideri, U. Analysis of Suitability Ranges of High Temperature Heat Pump Working Fluids. Appl. Therm. Eng. 2019, 150, 628–640. [Google Scholar] [CrossRef]
- Ma, D.; Sun, Y.; Ma, S.; Li, G.; Zhou, Z.; Ma, H. Study on the Working Medium of High Temperature Heat Pump Suitable for Industrial Waste Heat Recovery. Appl. Therm. Eng. 2024, 236, 121642. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, F.; Lyu, N.; Fan, H.; Zhang, X. Analysis of Low GWP Ternary Zeotropic Mixtures Applied in High-Temperature Heat Pump for Waste Heat Recovery. Energy Convers. Manag. 2023, 292, 117381. [Google Scholar] [CrossRef]
- Tan, Z.; Feng, X.; Yang, M.; Wang, Y. Energy and Economic Performance Comparison of Heat Pump and Power Cycle in Low Grade Waste Heat Recovery. Energy 2022, 260, 125149. [Google Scholar] [CrossRef]
- Vannoni, A.; Sorce, A.; Traverso, A.; Fausto Massardo, A. Techno-Economic Optimization of High-Temperature Heat Pumps for Waste Heat Recovery. Energy Convers. Manag. 2023, 290, 117194. [Google Scholar] [CrossRef]
- Nemati, A.; Nami, H.; Ranjbar, F.; Yari, M. A Comparative Thermodynamic Analysis of ORC and Kalina Cycles for Waste Heat Recovery: A Case Study for CGAM Cogeneration System. Case Stud. Therm. Eng. 2017, 9, 1–13. [Google Scholar] [CrossRef]
- Douvartzides, S.; Karmalis, I. Working Fluid Selection for the Organic Rankine Cycle (ORC) Exhaust Heat Recovery of an Internal Combustion Engine Power Plant. IOP Conf. Ser. Mater. Sci. Eng. 2016, 161, 012087. [Google Scholar] [CrossRef]
- Carcasci, C.; Ferraro, R.; Miliotti, E. Thermodynamic Analysis of an Organic Rankine Cycle for Waste Heat Recovery from Gas Turbines. Energy 2014, 65, 91–100. [Google Scholar] [CrossRef]
- Chen, H.; Goswami, D.Y.; Stefanakos, E.K. A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat. Renew. Sustain. Energy Rev. 2010, 14, 3059–3067. [Google Scholar] [CrossRef]
- Jiménez-García, J.C.; Ruiz, A.; Pacheco-Reyes, A.; Rivera, W. A Comprehensive Review of Organic Rankine Cycles. Processes 2023, 11, 1982. [Google Scholar] [CrossRef]
- Cruz, G.; Manuel, M.C. A Literature Review of the Kalina Cycle and Trends. IOP Conf. Ser. Earth Environ. Sci. 2022, 1046, 012011. [Google Scholar] [CrossRef]
- Da Costa Horta, G.R.; Barbosa, E.P.; Moreira, L.F.; Arrieta, F.R.P.; De Oliveira, R.N. Comparison of Kalina Cycles for Heat Recovery Application in Cement Industry. Appl. Therm. Eng. 2021, 195, 117167. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Rana, S.; Ahmadi, M.; Date, A.; Akbarzadeh, A. Trilateral Flash Cycle (TFC): A Promising Thermodynamic Cycle for Low Grade Heat to Power Generation. Energy Procedia 2019, 160, 208–214. [Google Scholar] [CrossRef]
- Iglesias Garcia, S.; Ferreiro Garcia, R.; Carbia Carril, J.; Iglesias Garcia, D. A Review of Thermodynamic Cycles Used in Low Temperature Recovery Systems over the Last Two Years. Renew. Sustain. Energy Rev. 2018, 81, 760–767. [Google Scholar] [CrossRef]
- Zamfirescu, C.; Dincer, I. Thermodynamic Analysis of a Novel Ammonia–Water Trilateral Rankine Cycle. Thermochim. Acta 2008, 477, 7–15. [Google Scholar] [CrossRef]
- Manente, G.; Ding, Y.; Sciacovelli, A. A Structured Procedure for the Selection of Thermal Energy Storage Options for Utilization and Conversion of Industrial Waste Heat. J. Energy Storage 2022, 51, 104411. [Google Scholar] [CrossRef]
- Kauko, H.; Rohde, D.; Hafner, A. Local Heating Networks with Waste Heat Utilization: Low or Medium Temperature Supply? Energies 2020, 13, 954. [Google Scholar] [CrossRef]
- Boubou, B.; Muritala, I.K.; Boukar, M.; Daho, T.; Nebié, J.; Rabani, A.; Bere, A. Assessment of Different Sands Potentiality to Formulate an Effective Thermal Energy Storage Material (TESM). J.P.SOAPHYS 2021, 2, C20A08. [Google Scholar] [CrossRef]
- Krönauer, A.; Lävemann, E.; Brückner, S.; Hauer, A. Mobile Sorption Heat Storage in Industrial Waste Heat Recovery. Energy Procedia 2015, 73, 272–280. [Google Scholar] [CrossRef]
- Royo, P.; Acevedo, L.; Ferreira, V.J.; García-Armingol, T.; López-Sabirón, A.M.; Ferreira, G. High-Temperature PCM-Based Thermal Energy Storage for Industrial Furnaces Installed in Energy-Intensive Industries. Energy 2019, 173, 1030–1040. [Google Scholar] [CrossRef]
- Barbi, S.; Barbieri, F.; Marinelli, S.; Rimini, B.; Merchiori, S.; Larwa, B.; Bottarelli, M.; Montorsi, M. Phase Change Material-Sand Mixtures for Distributed Latent Heat Thermal Energy Storage: Interaction and Performance Analysis. Renew. Energy 2021, 169, 1066–1076. [Google Scholar] [CrossRef]
- Rahmalina, D.; Adhitya, D.C.; Rahman, R.A.; Ismail, I. Improvement the Performance of Composite PCM Paraffin-Based Incorporate with Volcanic Ash as Heat Storage for Low-Temperature Application. EUREKA Phys. Eng. 2022, 1, 53–61. [Google Scholar] [CrossRef]
- Merlin, K.; Soto, J.; Delaunay, D.; Traonvouez, L. Industrial Waste Heat Recovery Using an Enhanced Conductivity Latent Heat Thermal Energy Storage. Appl. Energy 2016, 183, 491–503. [Google Scholar] [CrossRef]
- Niedermeier, K. A Perspective on High-Temperature Heat Storage Using Liquid Metal as Heat Transfer Fluid. Energy Storage 2023, 5, e530. [Google Scholar] [CrossRef]
- Goswami, R.; Das, R.; Ganguly, S. Performance Analysis of Salt Gradient Thermal Storage Device Driven by Waste Heat. In Proceedings of the 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Tenerife, Canary Islands, Spain, 19–21 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Tetteh, S.; Yazdani, M.R.; Santasalo-Aarnio, A. Cost-Effective Electro-Thermal Energy Storage to Balance Small Scale Renewable Energy Systems. J. Energy Storage 2021, 41, 102829. [Google Scholar] [CrossRef]
- Chen, L.; Yang, B.; Shen, X.; Xie, Z.; Sun, F. Thermodynamic Optimization Opportunities for the Recovery and Utilization of Residual Energy and Heat in China’s Iron and Steel Industry: A Case Study. Appl. Therm. Eng. 2015, 86, 151–160. [Google Scholar] [CrossRef]
- Akter, S.; Hossain, I. Waste Heat Utilization in a Ceramic Industry. Int. J. Energy Res. 1997, 21, 1215–1221. [Google Scholar] [CrossRef]
- Niamsuwan, S.; Kittisupakorn, P.; Mujtaba, I.M. A Newly Designed Economizer to Improve Waste Heat Recovery: A Case Study in a Pasteurized Milk Plant. Appl. Therm. Eng. 2013, 60, 188–199. [Google Scholar] [CrossRef]
- Wang, C.; He, B.; Sun, S.; Wu, Y.; Yan, N.; Yan, L.; Pei, X. Application of a Low Pressure Economizer for Waste Heat Recovery from the Exhaust Flue Gas in a 600 MW Power Plant. Energy 2012, 48, 196–202. [Google Scholar] [CrossRef]
- Sharfuddin, M.; Øi, L.E. Simulation of Heat Recovery from Data Centers Using Heat Pumps. In Proceedings of the SIMS 2020, Oulu, Finland, 22–24 September 2020; pp. 71–76. [Google Scholar]
- M’Baye, A. A Case Study of Heat Recovery: A Heat Pump in an Industrial Site. Ren. Ener. Sust. Dev. 2022, 8, 20. [Google Scholar] [CrossRef]
- Khurana, S.; Banerjee, R.; Gaitonde, U. Energy Balance and Cogeneration for a Cement Plant. Appl. Therm. Eng. 2002, 22, 485–494. [Google Scholar] [CrossRef]
- Engin, T.; Ari, V. Energy Auditing and Recovery for Dry Type Cement Rotary Kiln Systems––A Case Study. Energy Convers. Manag. 2005, 46, 551–562. [Google Scholar] [CrossRef]
- Fierro, J.J.; Hernández-Gómez, C.; Marenco-Porto, C.A.; Nieto-Londoño, C.; Escudero-Atehortua, A.; Giraldo, M.; Jouhara, H.; Wrobel, L.C. Exergo-Economic Comparison of Waste Heat Recovery Cycles for a Cement Industry Case Study. Energy Convers. Manag. X 2022, 13, 100180. [Google Scholar] [CrossRef]
- Ogriseck, S. Integration of Kalina Cycle in a Combined Heat and Power Plant, A Case Study. Appl. Therm. Eng. 2009, 29, 2843–2848. [Google Scholar] [CrossRef]
- Prananto, L.A.; Zaini, I.N.; Mahendranata, B.I.; Juangsa, F.B.; Aziz, M.; Soelaiman, T.A.F. Use of the Kalina Cycle as a Bottoming Cycle in a Geothermal Power Plant: Case Study of the Wayang Windu Geothermal Power Plant. Appl. Therm. Eng. 2018, 132, 686–696. [Google Scholar] [CrossRef]
- Forni, D.; Rossetti, N.; Vaccari, V.; Baresi, M. Heat Recovery for Electricity Generation in Industry. In Proceedings of the ECEEE Summer Study on Energy Efficiency in Industry 2012, Arnhem, The Netherlands, 11–14 September 2012; pp. 523–534. [Google Scholar]
- Peris, B.; Navarro-Esbrí, J.; Mateu-Royo, C.; Mota-Babiloni, A.; Molés, F.; Gutiérrez-Trashorras, A.J.; Amat-Albuixech, M. Thermo-Economic Optimization of Small-Scale Organic Rankine Cycle: A Case Study for Low-Grade Industrial Waste Heat Recovery. Energy 2020, 213, 118898. [Google Scholar] [CrossRef]
- Peris, B.; Navarro-Esbrí, J.; Molés, F.; Mota-Babiloni, A. Experimental Study of an ORC (Organic Rankine Cycle) for Low Grade Waste Heat Recovery in a Ceramic Industry. Energy 2015, 85, 534–542. [Google Scholar] [CrossRef]
- Casci, C.; Angelino, G.; Ferrari, P.; Gaia, M.; Giglioli, G.; Macchi, E. Heat Recovery in a Ceramic Kiln with an Organic Rankine Cycle Engine. J. Heat Recovery Syst. 1981, 1, 125–131. [Google Scholar] [CrossRef]
- Lee, Y.-R.; Liu, L.-W.; Chang, Y.-Y.; Hsieh, J.-C. Development and Application of a 200 kW ORC Generator System for Energy Recovery in Chemical Processes. Energy Procedia 2017, 129, 519–526. [Google Scholar] [CrossRef]
- Jung, H.C.; Krumdieck, S.; Vranjes, T. Feasibility Assessment of Refinery Waste Heat-to-Power Conversion Using an Organic Rankine Cycle. Energy Convers. Manag. 2014, 77, 396–407. [Google Scholar] [CrossRef]
- Ramirez, M.; Epelde, M.; De Arteche, M.G.; Panizza, A.; Hammerschmid, A.; Baresi, M.; Monti, N. Performance Evaluation of an ORC Unit Integrated to a Waste Heat Recovery System in a Steel Mill. Energy Procedia 2017, 129, 535–542. [Google Scholar] [CrossRef]
- Amiri Rad, E.; Mohammadi, S. Energetic and Exergetic Optimized Rankine Cycle for Waste Heat Recovery in a Cement Factory. Appl. Therm. Eng. 2018, 132, 410–422. [Google Scholar] [CrossRef]
- Knudsen, B.R.; Rohde, D.; Kauko, H. Thermal Energy Storage Sizing for Industrial Waste-Heat Utilization in District Heating: A Model Predictive Control Approach. Energy 2021, 234, 121200. [Google Scholar] [CrossRef]
- Ortega-Fernández, I.; Rodríguez-Aseguinolaza, J. Thermal Energy Storage for Waste Heat Recovery in the Steelworks: The Case Study of the REslag Project. Appl. Energy 2019, 237, 708–719. [Google Scholar] [CrossRef]
- Vondra, M.; Buzík, J.; Horňák, D.; Procházková, M.; Miklas, V.; Touš, M.; Jegla, Z.; Máša, V. Technology for Hot Spring Cooling and Geothermal Heat Utilization: A Case Study for Balneology Facility. Energies 2023, 16, 2941. [Google Scholar] [CrossRef]
- Jegla, Z.; Daxner, J. Conceptual Carbon-Reduction Oriented Assessment of Local Flue Gas Waste Heat Recovery. In Proceedings of the Engineering Mechanics 2023, Milovy, Czech Republic, 9–11 May 2023; pp. 107–110. [Google Scholar]
Reference | Ultra-Low Level | Low Level | Medium Level | High Level | Ultra-High Level |
---|---|---|---|---|---|
Ammar et al. (2012) [35] | – | <250 °C N/A | – | – | – |
Benedetti et al. (2021) [36] | <120 °C N/A | 120–230 °C N/A | 230–650 °C N/A | 650–870 °C N/A | >870 °C N/A |
Bianchi et al. (2019) [11] | – | <100 °C 51% | 100–300 °C 19% | >300 °C 30% | – |
Bonilla-Campos et al. (2019) [37] | – | <120 °C 38% | – | >120 °C 62% | – |
Brückner et al. (2015) [38] | – | <100 °C 30% | 100–400 °C 27% | >400 °C 43% | – |
Christodoulides et al. (2022) [22] | – | <100 °C N/A | 100–600 °C N/A | >600 °C N/A | – |
Forman et al. (2016) [7] | – | <100 °C 42% | 100–300 °C 20% | >300 °C 38% | – |
Haddad et al. (2014) [39] | – | 100–200 °C 66% | 200–500 °C 32% | >500 °C 2% | – |
Ji et al. (2024) [34] | – | <100 °C N/A | 100–300 °C N/A | >300 °C N/A | – |
Johnson et al. (2008) [1] | – | <230 °C 60% | – | >230 °C 40% | – |
Law et al. (2013) [33] | – | <260 °C N/A | – | – | – |
Loni et al. (2021) [40] | – | <230 °C N/A | 230–650 °C N/A | >650 °C N/A | – |
Luberti et al. (2022) [18] | <80 °C N/A | 80–240 °C N/A | 240–650 °C N/A | >650 °C N/A | – |
Papapetrou et al. (2018) [16] | – | <200 °C 33% | 200–500 °C 25% | >500 °C 42% | – |
Pehnt et al. (2011) [41] | – | <60 °C 82% | 60–140 °C 6% | >140 °C 12% | – |
Sollesnes and Helgerud (2009) [42] | – | <60 °C 47% | 60–140 °C 16% | >140 °C 37% | – |
Industry | Process or Waste Heat Stream | Temperature Level | References |
---|---|---|---|
Chemical and petrochemical | Conventional steam reforming | High | [8] |
Sulfuric acid process | High | [11] | |
Thermal oxidation of VOCs | High | [11] | |
Distilling | Medium–High | [14] | |
Boiler exhaust | Medium | [19] | |
Exhaust from ethylene furnaces | Medium | [36] | |
Processing furnace exhaust | Medium | [19] | |
Stack gas from crude/vacuum distillation | Medium | [36] | |
Compressor cooling air/water | Ultra-Low | [33] | |
Condensate | Ultra-Low | [19] | |
Condenser cooling water | Ultra-Low | [19] | |
Latex rubber | Ultra-Low | [18] | |
Methane production (electrolysis, biomethanation) | Ultra-Low | [17] | |
Process water | Ultra-Low | [19] | |
Soda ash | Ultra-Low | [18] | |
Food and tobacco | High-temperature frying | High | [11] |
Extracted air from cooking with fryers or ovens | Medium | [36] | |
Exhaust from spray/rotary dryers | Medium | [36] | |
Frying | Medium | [8] | |
Sterilizing | Medium | [14] | |
Drying | Low–Medium | [14] | |
Pasteurizing | Low–Medium | [14] | |
Utility processes (CHP) | Low–Medium | [8] | |
Water vapor from evaporation and distillation | Low–Medium | [36] | |
Canning of fruit/vegetables/meat | Low | [18] | |
Clean-in-place washing; washing of bottles, clothes, etc. | Low | [14] | |
Crude vegetable oil production from oilseeds | Low | [11] | |
Heat recovery from cooling systems | Low | [8,11] | |
Seed oil extraction process | Low | [8] | |
Sugar refining | Low | [18] | |
Yogurt maturation | Low | [14] | |
Dairy pasteurization | Ultra-Low | [18] | |
Grain milling | Ultra-Low | [18] | |
Iron and steel | Electric arc furnaces | Ultra-High | [60] |
Flue gas from continuous/forging/pit furnaces | Ultra-High | [61] | |
Basic oxygen furnaces | High | [18] | |
Blast furnaces | High | [18] | |
Casting | High | [18] | |
Coking | High | [18] | |
Rolling | High | [62] | |
Sintering | Medium | [18] | |
Mining | Crushing/haulage exhaust | Medium | [18,63] |
Drilling/digging coolant | Medium | [18] | |
Separation reboiler exhaust | Medium | [64] | |
Motor coolant | Ultra-Low | [65] | |
Air conditioning | Ultra-Low | [18] | |
Non-ferrous metals | Blast furnaces | High | [18] |
Casting | High | [18] | |
Exhaust gas from aluminum, copper, or zinc refining furnaces | High | [14] | |
Induction furnaces | High | [18] | |
Smelting | High | [8,11] | |
Zinc sulfide production | High | [8,11] | |
Exhaust from aluminum casting with a stack melter | Medium | [36] | |
Primary/secondary lead production | Medium | [8,11] | |
Rolling | Medium | [18] | |
Sintering | Medium | [18] | |
Non-metallic materials | Flue gas from glass-melting furnaces | Ultra-High | [18,61] |
Clinker | Ultra-High | [18] | |
Lime | Ultra-High | [18] | |
Ceramic kilns | High | [18] | |
Clinker | High | [8,11] | |
Exhaust gas from cement kilns (dry process) or glass-melting furnaces | High | [14] | |
Furnace heating and primary melting | High | [8,11] | |
Kiln firing | High | [8,11] | |
Exhaust from cement kilns using a 5- or 6-stage preheater | Medium | [36] | |
Exhaust gas from ceramic furnaces | Medium | [66] | |
Hot air discharged from clinker coolers | Low–Medium | [36] | |
Ceramic ovens | Low | [18] | |
Power | Gas turbine exhaust | Medium–High | [67] |
Coal/gas/oil-fired boiler exhaust | Medium | [68,69] | |
Solar concentrators | Medium | [67] | |
Flat-panel/vacuum-tube solar collectors | Low | [67] | |
Geothermal technologies | Ultra-Low–Low | [67] | |
Condensate | Ultra-Low | [18] | |
Engine coolant | Ultra-Low | [18] | |
Steam turbine exhaust | Ultra-Low | [18] | |
Pulp and paper | Chemical/mechanical pulping | Low–High | [8,11] |
Papermaking and related processes | Low–High | [8,11] | |
Furnace wall cooling water | Low | [36] | |
Waste steam/water from slag flushing in furnaces | Low | [36] | |
Combined heat and power plants | Ultra-Low | [18] | |
White water from TEMPO-mediated oxidation | Ultra-Low | [18] | |
Textile | Dirt removal | High | [8,11] |
Drying | Medium | [8,11,14] | |
Cotton warp yarn optimization | Low–Medium | [8,11] | |
Dyeing | Low–Medium | [14] | |
Dyeing | Low | [8,11] | |
Bleaching | Low | [14] | |
Dyed wastewater from drying | Low | [36] | |
Rinsing after dyeing | Low | [14] | |
Stenter exhaust (fabric drying and finishing) | Low | [36] | |
Washing | Low | [14] | |
Wastewater rejected from heat exchangers | Low | [36] |
Technology | Temperature Level | References |
---|---|---|
Absorption refrigerator | Ultra-Low–Low | [76] |
Ultra-Low | [77] | |
Adsorption chiller | Ultra-Low–Low | [78] |
Ultra-Low | [77] | |
Air preheater | Low–Medium | [2,79] |
Ultra-Low–Medium | [48] | |
Economizer | Low–Medium | [2] |
Ultra-Low–Medium | [48] | |
Flat heat pipe | Ultra-Low–Ultra-High | [22,80,81] |
Medium–Ultra-High | [48] | |
up to High | [82] | |
Ultra-Low–Medium | [2] | |
Heat pipe (condensing, non-condensing) | Ultra-Low–Medium | [22] |
Heat pump | Low–Medium | [2] |
Ultra-Low–Low | [83] | |
up to Low | [84] | |
Ultra-Low | [48,77,82,85,86] | |
Hot water building heating | Ultra-Low–Low | [76] |
Hot water storage | Ultra-Low | [77] |
Kalina cycle | Low–Medium | [77,87] |
Ultra-Low–Medium | [59,73,88] | |
Ultra-Low–Low | [32] | |
Ultra-Low and up | [89] | |
Organic Rankine cycle | Medium and up | [90] |
Low–Medium | [91,92] | |
Ultra-Low–Medium | [21,32,48,77,84,92,93] | |
Low and up | [94] | |
Ultra-Low and up | [85,95,96] | |
Ultra-Low | [76] | |
Phase change material | Medium–High | [77] |
Plate heat exchanger | Medium–High | [2] |
Ultra-Low–Medium | [48,77] | |
Ultra-Low–Low | [97] | |
Plate-fin heat exchanger | Ultra-Low–Low | [98] |
Ultra-Low | [77,99] | |
Rankine cycle (without explicit specification) | Medium–High | [92] |
Medium and up | [33,84,100] | |
Medium | [93] | |
Low | [94] | |
Recuperator | up to Ultra-High | [101] |
Low–High | [2] | |
Medium | [84] | |
Regenerative/recuperative burner | High–Ultra-High | [48] |
High | [2] | |
Regenerator | Low–High | [2] |
Shell-and-tube heat exchanger | Ultra-Low–Medium | [77] |
Steam dehumidification | Ultra-Low | [76] |
Steam generator | High | [2] |
Ultra-Low–Medium | [48] | |
Steam micro-turbine | Medium–High | [92] |
Steam Rankine cycle | Medium–High | [32] |
Medium | [76] | |
Stirling engine | Medium–Ultra-High | [102] |
Ultra-Low–High | [77] | |
Supercritical CO2 cycle | Medium | [22,82] |
Low–Medium | [77] | |
Medium–High | [92] | |
Transcritical CO2 cycle | Medium–High | [32] |
Trilateral flash cycle | Ultra-Low–Medium | [77] |
Ultra-Low | [22] | |
Waste heat boiler | Medium–High | [2] |
Ultra-Low–Medium | [48] |
Technology | Process | Waste Heat Source | Temperatures | Reference |
---|---|---|---|---|
Absorption refrigerator | Iron smelting | Hot-blast stove flue gas | 250 °C | [154] |
Utility system | Steam turbine effluent | 70–140 °C | [75] | |
Double-pipe heat exchanger | Ceramics production | Kiln exhaust gas | 600 °C | [155] |
Economizer | Milk pasteurization | Furnace/boiler exhaust gas | 175–330 °C | [156] |
Power generation | Boiler exhaust gas | 70–123 °C | [157] | |
Heat pump | Data-center cooling | Cooling water | 65 °C | [158] |
Pharmaceutical application (unspecified) | Chilled water | 7 °C | [159] | |
Utility system | Steam turbine effluent | 70–140 °C | [75] | |
Heat recovery steam generator | Cement production | Exhaust gases from a preheater, calciner, kiln, and cooler | 100–400 °C | [160] |
Cement production | Kiln exhaust gas | 170–315 °C | [161] | |
Hot water boiler | Utility system | Steam turbine effluent | 70–140 °C | [75] |
Kalina cycle | Cement production | Kiln exhaust gas | 327 °C | [162] |
Combined heat and power production | Flue gas | 130–150 °C | [163] | |
Geothermal power generation | Brine | 150–180 °C | [164] | |
Organic Rankine cycle | Cement production | Kiln exhaust gas | 1400 °C | [83] |
Cement production | Kiln exhaust gas | 327 °C | [162] | |
Cement production | Kiln exhaust gas, clinker cooler exhaust gas | 150–180 °C | [165] | |
Ceramics production | Exhaust air from the intermediate cooling zone | 200–300 °C | [166] | |
Ceramics production | Kiln exhaust gas | 200–300 °C | [167] | |
Ceramics production | Kiln exhaust gas | 150–220 °C | [168] | |
Crude dehydrogenation | Condensate | 82 °C | [169] | |
Float glass production | Glass-melting furnace exhaust gas | 150–180 °C | [165] | |
Gas compression | Gas turbine exhaust gas | 150–180 °C | [165] | |
Kerosene production | Liquid kerosene | 140–105 °C | [170] | |
Steel production | Electric arc furnace exhaust gas | 200–500 °C | [171] | |
Steel production | Exhaust gas from a re-heating furnace of a rolling mill | 150–180 °C | [165] | |
Utility system | Steam turbine effluent | 70–140 °C | [75] | |
Plate heat exchanger | Tobacco drying | Dryer exhaust gas | 140 °C | [104] |
Steam cycle | Cement production | Clinker-cooler exhaust gas | 315 °C | [172] |
Cement production | Exhaust gas from a raw materials preheater | 380 °C | [172] | |
Thermal energy storage | District heating | Off-gas from a ferrosilicon plant | N/A | [173] |
Steel production | Electric arc furnace exhaust gas | 700–1500 °C | [174] | |
Trilateral flash cycle | Cement production | Kiln exhaust gas | 327 °C | [162] |
Geothermal power generation | Brine | 150 °C | [142] | |
Vacuum cooler | Hot-spring cooling | Thermomineral water | 50–73 °C | [175] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turek, V.; Kilkovský, B.; Daxner, J.; Babička Fialová, D.; Jegla, Z. Industrial Waste Heat Utilization in the European Union—An Engineering-Centric Review. Energies 2024, 17, 2084. https://doi.org/10.3390/en17092084
Turek V, Kilkovský B, Daxner J, Babička Fialová D, Jegla Z. Industrial Waste Heat Utilization in the European Union—An Engineering-Centric Review. Energies. 2024; 17(9):2084. https://doi.org/10.3390/en17092084
Chicago/Turabian StyleTurek, Vojtěch, Bohuslav Kilkovský, Ján Daxner, Dominika Babička Fialová, and Zdeněk Jegla. 2024. "Industrial Waste Heat Utilization in the European Union—An Engineering-Centric Review" Energies 17, no. 9: 2084. https://doi.org/10.3390/en17092084
APA StyleTurek, V., Kilkovský, B., Daxner, J., Babička Fialová, D., & Jegla, Z. (2024). Industrial Waste Heat Utilization in the European Union—An Engineering-Centric Review. Energies, 17(9), 2084. https://doi.org/10.3390/en17092084