Factors Influencing the Decision-Making Process at the End-of-Life Cycle of Onshore Wind Farms: A Systematic Review
Abstract
:1. Introduction
- ❖
- Carrying out a pioneering systematic review in relation to the factors and variables influencing the decision-making process at the end-of-life cycle of onshore wind farms;
- ❖
- Presenting an overview of research that highlights the strategic decision at the end of the service life of onshore wind farms (Section 4.1);
- ❖
- Identifying decision options at the end-of-life cycle of onshore wind farms.
2. Theoretical Background
3. Methodology
4. Results and Discussion
4.1. Classification/Systematization of Publications
4.2. Classification of Categories
- ❖
- Categories with external aspects:
- ➢
- National energy guideline (national aspect);
- ➢
- Regulatory aspects and public policies;
- ➢
- Logistics and infrastructure aspect;
- ➢
- Technological development in the sector.
- ❖
- Categories with internal aspects:
- ➢
- Economic/financial aspect;
- ➢
- Environmental aspect;
- ➢
- Operational aspect.
- ❖
- The strong-influence arrow refers to the relationship between the categories with external aspects of factors not controllable by the farm entrepreneur and which are decisive for the legitimacy, standardization of operation, availability of infrastructure and production chain—green arrows;
- ❖
- The intermediate/medium-influence arrow refers to the relationship between categories with uncontrollable external factors that interfere with categories of controllable internal factors—yellow arrows;
- ❖
- The weak-influence arrow refers to the relationship between the internal-aspect categories and the internal factors that are controllable by the farm entrepreneur—blue arrows.
4.2.1. Categories with External Factors
National Energy Guidelines (National Aspects)
- (a)
- Energy Planning
Public Policies and Regulatory Aspects
- (a)
- Land-use authorization;
- (b)
- Public policies (laws and/or decrees) related to the renewal of power generation contracts or decommissioning.
- ❖
- ❖
- ❖
- ❖
- Guarantees to protect investments against the reduction in the average value of market clearing prices and the increase in their volatility [52];
- ❖
- ❖
Logistics and Infrastructure Aspects
- (a)
- Electrical network infrastructure;
- (b)
- Physical infrastructure.
Technological Development in the Sector
- (a)
- Faster Technological Development
4.2.2. Categories with Internal Factors
Economic/Financial Aspects
- (a)
- Investments (CAPEX)/ capital cost;
- (b)
- Operation and maintenance costs in relation to operational output (OPEX):
- i.
- Obsolete parts resulting in a decrease in total power generation and an increase in operation and maintenance costs (OPEX);
- ii.
- Unsuitable location (presence of degrading agents, causing accelerated depreciation) and higher maintenance costs (OPEX);
- iii.
- Expiration of land-leasing contracts for wind farms;
- iv.
- Leasing time and land-use authorization;
- v.
- Possibility of reducing the number of towers and the operation and maintenance cost (OPEX).
- (c)
- The price of the new wind generator in the case of full repowering;
- (d)
- Disposal and dismantling costs including labor and equipment and transportation;
- (e)
- Removal and/or reuse cost;
- (f)
- Material residual value, recycling costs and disposal costs.
Environmental Aspects
- (a)
- Environmental impacts;
- (b)
- Diversification of the electrical matrix (hybridization).
Operational Aspects
- (a)
- The number of towers, tower height, hub size, rotor diameter, radius Size and minimum distance between towers;
- (b)
- The wind speed, wind direction, capacity factor and potential wind density;
- (c)
- The leasing of the areas (lands) and the expiration of the current contracts (time);
- (d)
- Layout and the wake effect;
- (e)
- Diversification of the electrical matrix (hybridization).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
n | Authors | Title | Year | Country | Decision | Categories | Factors | Variables |
---|---|---|---|---|---|---|---|---|
1 | [29] | Life-cycle assessment of a 2-MW rated power wind turbine: CML method | 2009 | Spain | Total Decommissioning (shutdown) | Environmental Aspects |
|
|
Economic/Financial Aspects | ||||||||
Economic/Financial Aspects |
| |||||||
2 | [30] | LCA sensitivity analysis of a multi-megawatt wind turbine | 2010 | Spain | Total Decommissioning (shutdown) | Environmental Aspects |
|
|
Operational Aspects | ||||||||
Environmental Aspects |
| |||||||
Operational Aspects | ||||||||
3 | [31] | An Exit and Entry Study of Renewable Power Producers: A Real Options Approach | 2012 | USA | Total Decommissioning (shutdown) | Economic/Financial Aspects |
|
|
Technological Development in the Sector | ||||||||
Operational Aspects | ||||||||
National Energy Directive (National Aspects) |
|
| ||||||
Public Policies and Regulatory Aspects | ||||||||
Economic/Financial Aspects | ||||||||
4 | [32] | Producer responsibility: Defining the incentive for recycling composite wind turbine blades in Europe | 2012 | United Kingdom | Total Decommissioning (shutdown) | Economic/Financial Aspects |
|
|
Environmental Aspects | ||||||||
National Energy Directive (National Aspects) |
|
| ||||||
Public Policies and Regulatory Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Economic/Financial Aspects |
|
| ||||||
Logistics and Infrastructure Aspects | ||||||||
Operational Aspects | ||||||||
Economic/Financial Aspects |
| |||||||
Operational Aspects | ||||||||
Environmental Aspects | ||||||||
Public Policies and Regulatory Aspects |
| |||||||
Environmental Aspects | ||||||||
5 | [33] | A multi-period modelling and optimization approach to the planning of China’s power sector with consideration of carbon dioxide mitigation | 2012 | China | Partial Decommissioning with Retrofit | National Energy Directive (National Aspects) |
|
|
Logistics and Infrastructure Aspects | ||||||||
Operational Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Environmental Aspects |
|
| ||||||
Operational Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Operational Aspects |
|
| ||||||
Economic/Financial Aspects |
|
| ||||||
Public Policies and Regulatory Aspects | ||||||||
Economic/Financial Aspects |
|
| ||||||
Technological Development in the Sector | ||||||||
Operational Aspects | ||||||||
National Energy Directive (National Aspects) |
|
| ||||||
Public Policies and Regulatory Aspects | ||||||||
Technological Development in the Sector | ||||||||
6 | [13] | Preparing for end of service life of wind turbines | 2013 | USA | Total Decommissioning with full Repowering | Operational Aspects |
|
|
Logistics and Infrastructure Aspects | ||||||||
Economic/Financial Aspects | ||||||||
National Energy Directive (National Aspects) |
|
| ||||||
Public Policies and Regulatory Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Technological Development in the Sector |
|
| ||||||
Logistics and Infrastructure Aspects | ||||||||
Operational Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Logistics and Infrastructure Aspects |
|
| ||||||
Operational Aspects | ||||||||
Operational Aspects |
|
| ||||||
Environmental Aspects | ||||||||
Logistics and Infrastructure Aspects | ||||||||
Economic/Financial Aspects |
|
| ||||||
Public Policies and Regulatory Aspects | ||||||||
Environmental Aspects | ||||||||
Operational Aspects | ||||||||
7 | [34] | Comparative life cycle assessment of tubular wind towers and foundations—Part 2: Life cycle analysis | 2014 | Portugal | Partial Decommissioning with partial Repowering and retrofit | Environmental Aspects |
| |
Economic/Financial Aspects | ||||||||
Environmental Aspects |
| |||||||
Logistics and Infrastructure Aspects | ||||||||
Technological Development in the Sector |
|
| ||||||
Operational Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Logistics and Infrastructure Aspects | ||||||||
8 | [35] | Repowering a Windfarm—A Techno-Economic Approach | 2015 | India | Partial Decommissioning with partial Repowering | Economic/Financial Aspects |
|
|
Operational Aspects | ||||||||
|
| |||||||
|
| |||||||
9 | [36] | Wind turbine blade waste in 2050 | 2017 | England | Partial Decommissioning with partial Repowering | Operational Aspects |
|
|
Economic/Financial Aspects | ||||||||
Technological Development in the Sector |
|
| ||||||
Operational Aspects | ||||||||
Logistics and Infrastructure Aspects | ||||||||
10 | [37] | Current and potential decommissioning scenarios for end-of-life composite wind blades | 2017 | USA | Total Decommissioning (shutdown) | Public Policies and Regulatory Aspects |
|
|
Operational Aspects | ||||||||
Environmental Aspects | ||||||||
Economic/Financial Aspects |
|
| ||||||
Operational Aspects | ||||||||
Environmental Aspects | ||||||||
Public Policies and Regulatory Aspects | ||||||||
11 | [38] | Life cycle assessment of a wind farm repowering process | 2018 | Spain | Partial Decommissioning with partial Repowering | Technological Development in the Sector |
|
|
Operational Aspects | ||||||||
Logistics and Infrastructure Aspects | ||||||||
Economic/Financial Aspects | ||||||||
12 | [39] | Analysis of the Repowering Wind Farm of Sidi-Daoud in Tunisia | 2019 | Tunisia | Total Decommissioning with full Repowering | Technological Development in the Sector |
|
|
Operational Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Technological Development in the Sector |
| |||||||
Operational Aspects | ||||||||
Logistics and Infrastructure Aspects | ||||||||
Operational Aspects |
| |||||||
Environmental Aspects |
|
| ||||||
Operational Aspects | ||||||||
13 | [40] | Life cycle assessment of wind farms in Ethiopia | 2020 | Ethiopia | Partial Decommissioning with Retrofit | Environmental Aspects |
|
|
Environmental Aspects |
|
| ||||||
Operational Aspects | ||||||||
Economic/Financial Aspects | ||||||||
14 | [15] | Environmental impacts of decommissioning: Onshore versus offshore wind farms | 2020 | England and Scotland | Total Decommissioning (shutdown) | Environmental Aspects |
|
|
Public Policies and Regulatory Aspects | ||||||||
Operational Aspects |
|
| ||||||
Economic/Financial Aspects | ||||||||
Public Policies and Regulatory Aspects | ||||||||
Environmental Aspects | ||||||||
Public Policies and Regulatory Aspects |
|
| ||||||
Environmental Aspects | ||||||||
Operational Aspects | ||||||||
Logistics and Infrastructure Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Economic/Financial Aspects |
|
| ||||||
Operational Aspects | ||||||||
Technological Development in the Sector | ||||||||
15 | [45] | Analysis of scenarios for repowering wind farms in Brazil | 2021 | Brazil | Partial Decommissioning with partial Repowering | Economic/Financial Aspects |
|
|
Operational Aspects |
|
| ||||||
Economic/Financial Aspects | ||||||||
National Energy Directive (National Aspects) |
|
| ||||||
Public Policies and Regulatory Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Economic/Financial Aspects |
|
| ||||||
Operational Aspects | ||||||||
Technological Development in the Sector | ||||||||
16 | [41] | Multifaceted drivers for onshore wind energy repowering and their implications for energy transition | 2020 | Denmark | Total Decommissioning with full Repowering | Operational Aspects |
|
|
Economic/Financial Aspects | ||||||||
Technological Development in the Sector | ||||||||
Environmental Aspects |
|
| ||||||
Logistics and Infrastructure Aspects |
|
| ||||||
Operational Aspects | ||||||||
Public Policies and Regulatory Aspects |
|
| ||||||
17 | [42] | 20% of US electricity from wind will have limited impacts on system efficiency and regional climate | 2020 | USA | Partial Decommissioning with partial Repowering | Environmental Aspects |
|
|
Operational Aspects |
| |||||||
Operational Aspects |
| |||||||
Economic/Financial Aspects | ||||||||
Technological Development in the Sector |
|
| ||||||
Operational Aspects | ||||||||
Economic/Financial Aspects | ||||||||
18 | [43] | Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations | 2020 | Pakistan | Partial Decommissioning with partial Repowering | Operational Aspects |
|
|
Economic/Financial Aspects | ||||||||
Operational Aspects |
| |||||||
| ||||||||
| ||||||||
Economic/Financial Aspects | ||||||||
19 | [44] | Optimization of the wind farm layout by repowering the old wind farm and integrating solar power plants: A case study | 2020 | India | Partial Decommissioning with Repowering and Hybridization | Operational Aspects |
|
|
Environmental Aspects | ||||||||
Operational Aspects |
| |||||||
Economic/Financial Aspects | ||||||||
Operational Aspects |
| |||||||
Economic/Financial Aspects | ||||||||
Logistics and Infrastructure Aspects |
|
| ||||||
Operational Aspects | ||||||||
Operational Aspects |
|
| ||||||
Economic/Financial Aspects | ||||||||
Operational Aspects |
| |||||||
Operational Aspects |
|
| ||||||
Technological Development in the Sector | ||||||||
Economic/Financial Aspects | ||||||||
20 | [46] | Leveraging on repowering of wind sites for potential wind-solar hybrid capacities: A case study | 2021 | India | Partial Decommissioning with Repowering and Hybridization | Operational Aspects |
|
|
Technological Development in the Sector |
| |||||||
Operational Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Operational Aspects |
| |||||||
Economic/Financial Aspects | ||||||||
Operational Aspects |
| |||||||
Economic/Financial Aspects |
|
| ||||||
Technological Development in the Sector | ||||||||
Operational Aspects | ||||||||
Environmental Aspects |
|
| ||||||
Operational Aspects | ||||||||
Logistics and Infrastructure Aspects |
|
| ||||||
Operational Aspects | ||||||||
Technological Development in the Sector |
|
| ||||||
Operational Aspects | ||||||||
Logistics and Infrastructure Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Operational Aspects |
| |||||||
Economic/Financial Aspects | ||||||||
21 | [47] | Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective | 2021 | Pakistan | Partial Decommissioning with partial Repowering | Operational Aspects |
|
|
Economic/Financial Aspects | ||||||||
Operational Aspects |
| |||||||
Environmental Aspects |
| |||||||
Economic/Financial Aspects | ||||||||
22 | [48] | Regional rotor blade waste quantification in Germany until 2040 | 2021 | Germany | Total Decommissioning (shutdown) | Operational Aspects |
|
|
Public Policies and Regulatory Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Public Policies and Regulatory Aspects |
| |||||||
Economic/Financial Aspects | ||||||||
Operational Aspects |
|
| ||||||
Economic/Financial Aspects | ||||||||
Environmental Aspects |
|
| ||||||
23 | [49] | Sounding out the repowering potential of wind energy—A scenario-based assessment from Germany | 2021 | Germany | Total Decommissioning with full Repowering | Operational Aspects |
|
|
Operational Aspects |
|
| ||||||
Economic/Financial Aspects | ||||||||
Logistics and Infrastructure Aspects |
| |||||||
Technological Development in the Sector | ||||||||
Operational Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Operational Aspects |
|
| ||||||
Economic/Financial Aspects | ||||||||
24 | [50] | Energy savings analysis in logistics of a wind farm repowering process: A case study | 2021 | France | Partial Decommissioning with partial Repowering | Economic/Financial Aspects |
|
|
Operational Aspects |
|
| ||||||
Economic/Financial Aspects | ||||||||
Operational Aspects |
|
| ||||||
Economic/Financial Aspects | ||||||||
Technological Development in the Sector |
| |||||||
Operational Aspects | ||||||||
Logistics and Infrastructure Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Public Policies and Regulatory Aspects |
|
| ||||||
Environmental Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Technological Development in the Sector | ||||||||
Logistics and Infrastructure Aspects |
|
| ||||||
Economic/Financial Aspects | ||||||||
25 | [51] | Economic and sensitivity analysis on wind farm end-of-life strategies | 2022 | Brazil | Partial Decommissioning with partial Repowering | Operational Aspects |
|
|
Economic/Financial Aspects | ||||||||
Economic/Financial Aspects |
|
| ||||||
Economic/Financial Aspects |
|
| ||||||
Operational Aspects | ||||||||
Operational Aspects |
| |||||||
Economic/Financial Aspects | ||||||||
26 | [52] | Multi-dimensional barrier identification for wind farm repowering in Spain through an expert judgment approach | 2022 | Spain | Partial Decommissioning with partial Repowering | Technological Development in the Sector |
| Capacity factor (energy production time);Quantity of energy produced;Revenues from the sale of electricity (operating revenues). |
Operational Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Operational Aspects |
| |||||||
Environmental Aspects | ||||||||
Economic/Financial Aspects | ||||||||
Operational Aspects |
|
| ||||||
Economic/Financial Aspects | ||||||||
Logistics and Infrastructure Aspects |
|
| ||||||
Operational Aspects | ||||||||
Economic/Financial Aspects |
|
| ||||||
Technological Development in the Sector | ||||||||
Operational Aspects | ||||||||
Economic/Financial Aspects |
|
| ||||||
Public Policies and Regulatory Aspects |
|
| ||||||
Economic/Financial Aspects | ||||||||
Economic/Financial Aspects |
|
|
References
- Chen, T.-Y.; Yeh, T.-L.; Hsuan, Y. Comparative Analysis of Endowments Effect Renewable Energy Efficiency Among OECD Countries. In New Developments in Renewable Energy; IntechOpen: London, UK, 2013; pp. 193–211. [Google Scholar]
- Sampaio, P.G.V.; Aguirre González, M.O.; Monteiro de Vasconcelos, R.; dos Santos, M.A.T.; Jácome Vidal, P.d.C.; Pereira, J.P.P.; Santi, E. Prospecting technologies for photovoltaic solar energy: Overview of its technical-commercial viability. Int. J. Energy Res. 2020, 44, 651–668. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Tripling Renewable Power and Doubling Energy Efficiency by 2030: Crucial Steps towards 1.5°, 2023th ed.; IRENA: Abu Dhabi, United Arab Emirates, 2023; 62p, Available online: www.irena.org/publications (accessed on 14 April 2023).
- Global Wind Energy Council. Global Wind Report 2022. GWEC. 2022. Available online: https://gwec.net/global-wind-report-2022/ (accessed on 7 January 2023).
- Cooperman, A.; Eberle, A.; Lantz, E. Wind turbine blade material in the United States: Quantities, costs, and end-of-life options. Resour. Conserv. Recycl. 2021, 168, 105439. [Google Scholar] [CrossRef]
- ABEEólica. Infowind #30. Associação Brasileira de Energia Eólica e Novas Tecnologias. 2023, pp. 1–2. Available online: https://abeeolica.org.br/energia-eolica/dados-abeeolica/ (accessed on 14 April 2023).
- Topham, E.; McMillan, D. Sustainable decommissioning of an offshore wind farm. Renew. Energy 2017, 102, 470–480. [Google Scholar] [CrossRef]
- Ozoemena, M.; Cheung, W.M.; Hasan, R. Comparative LCA of technology improvement opportunities for a 1.5-MW wind turbine in the context of an onshore wind farm. Clean Technol. Environ. Policy 2018, 20, 173–190. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Du, H.; Zuo, J.; Li, R.Y.M.; Zhou, Z.; Bi, F.; Garvlehn, M.P. A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study. Appl. Energy 2019, 249, 37–45. [Google Scholar] [CrossRef]
- Brasil. Lei n° 14.182 de 12 de julho de 2021. Presidência da República do Brasil. Brasília, Brasil. 2021; pp. 1–14. Available online: https://www.planalto.gov.br/ccivil_03/_ato2019-2022/2021/Lei/L14182.htm (accessed on 2 August 2021).
- Agência Nacional de Energia Elétrica. Sistema de Informações de Geração da ANEEL-SIGA. ANEEL. 2022. Available online: https://dadosabertos.aneel.gov.br/dataset/siga-sistema-de-informacoes-de-geracao-da-aneel (accessed on 17 August 2023).
- Al Hamed, H. Onshore Wind Farm Repowering Alternative Scenarios and Cost Assessment; Uppsala University: Uppsala, Sweden, 2021; Available online: http://oatd.org/oatd/record?record=oai%5C%3ADiVA.org%5C%3Auu-435161 (accessed on 19 December 2022).
- Ortegon, K.; Nies, L.F.; Sutherland, J.W. Preparing for end of service life of wind turbines. J. Clean. Prod. 2013, 39, 191–199. [Google Scholar] [CrossRef]
- Knutson, K. Wind Farm Repowering and Decommissioning Is Big Business. Energy Central. 2019. Available online: https://energycentral.com/c/cp/wind-farm-repowering-and-decommissioning-big-business (accessed on 17 August 2023).
- Hall, R.; João, E.; Knapp, C.W. Environmental impacts of decommissioning: Onshore versus offshore wind farms. Environ. Impact Assess Rev. 2020, 83, 106404. [Google Scholar] [CrossRef]
- Coriolis Energy. The Wind Farm Life Cycle. Coriolis Energy. 2020, pp. 1–3. Available online: http://www.coriolis-energy.com/landowners/wind_farm_life_cycle.html (accessed on 3 November 2021).
- Judge, F.; McAuliffe, F.D.; Sperstad, I.B.; Chester, R.; Flannery, B.; Lynch, K.; Murphy, J. A lifecycle financial analysis model for offshore wind farms. Renew. Sustain. Energy Rev. 2019, 103, 370–383. [Google Scholar] [CrossRef]
- Shafiee, M.; Brennan, F.; Espinosa, I.A. A parametric whole life cost model for offshore wind farms. Int. J. Life Cycle Assess. 2016, 21, 961–975. [Google Scholar] [CrossRef]
- Andersen, N. Wind Turbine End-of-Life: Characterisation of Waste Material; University of Gavle: Gävle, Sweden, 2015; Available online: https://www.diva-portal.org/smash/get/diva2:873368/FULLTEXT01.pdf (accessed on 17 January 2023).
- Lacal-Arántegui, R.; Uihlein, A.; Yusta, J.M. Technology effects in repowering wind turbines. Wind Energy 2020, 23, 660–675. [Google Scholar] [CrossRef]
- Topham, E.; McMillan, D.; Bradley, S.; Hart, E. Recycling offshore wind farms at decommissioning stage. Energy Policy 2019, 129, 698–709. [Google Scholar] [CrossRef]
- Jadali, A.; Ioannou, A.; Kolios, A. A multi-attribute review toward effective planning of end-of-life strategies for offshore wind farms. Energy Sources Part B Econ. Plan. Policy 2021, 16, 584–602. [Google Scholar] [CrossRef]
- Abadie, L.M.; Goicoechea, N. Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain. Energies 2021, 14, 3678. [Google Scholar] [CrossRef]
- Velasco, A.M.Z. Avaliação de Investimentos em Retrofit de Parques Eólicos por Opções Reais; Pontífica Universidade Católica do Rio de Janeiro: Rio de Janeiro, Brazil, 2017; Available online: https://www.maxwell.vrac.puc-rio.br/30877/30877.PDF (accessed on 7 January 2023).
- Bezbradica, M.; Kerkvliet, H.; Borbolla, I.M.; Lehtimaki, P. Introducing multi-criteria decision analysis for wind farm repowering: A case study on Gotland. In Proceedings of the 1st International Conference Multidisciplinary Engineering Design Optimization MEDO 2016, Belgrade, Serbia, 14–16 September 2016; pp. 1–8. Available online: https://researchportal.tuni.fi/en/publications/introducing-multi-criteria-decision-analysis-for-wind-farm-repowe (accessed on 18 August 2023).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Regona, M.; Yigitcanlar, T.; Xia, B.; Li, R.Y.M. Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 45. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; da Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar] [CrossRef]
- Martinez, E.; Sanz, F.; Pellegrini, S.; Jimenez, E.; Blanco, J. Life-cycle assessment of a 2-MW rated power wind turbine: CML method. Int. J. Life Cycle Assess. 2009, 14, 52–63. [Google Scholar] [CrossRef]
- Martinez, E.; Jimenez, E.; Blanco, J.; Sanz, F. LCA sensitivity analysis of a multi-megawatt wind turbine. Appl. Energy 2010, 87, 2293–2303. [Google Scholar] [CrossRef]
- Min, K.J.; Lou, C.; Wang, C.H. An Exit and Entry Study of Renewable Power Producers: A Real Options Approach. Eng. Econ. 2012, 57, 55–75. [Google Scholar] [CrossRef]
- Cherrington, R.; Goodship, V.; Meredith, J.; Wood, B.M.; Coles, S.R.; Vuillaume, A.; Feito-Boirac, A.; Spee, F.; Kirwan, K. Producer responsibility: Defining the incentive for recycling composite wind turbine blades in Europe. Energy Policy 2012, 47, 13–21. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, P.; Ma, L.; Li, Z.; Ni, W. A multi-period modelling and optimization approach to the planning of China’s power sector with consideration of carbon dioxide mitigation. Comput. Chem. Eng. 2012, 37, 227–247. [Google Scholar] [CrossRef]
- Gervásio, H.; Rebelo, C.; Moura, A.; Veljkovic, M.; Simões da Silva, L. Comparative life cycle assessment of tubular wind towers and foundations—Part 2: Life cycle analysis. Eng. Struct. 2014, 74, 292–299. [Google Scholar] [CrossRef]
- Prabu, T.; Kottayil, S.K. Repowering a Windfarm—A Techno-Economic Approach. Wind. Eng. 2015, 39, 385–397. [Google Scholar] [CrossRef]
- Liu, P.; Barlow, C.Y. Wind turbine blade waste in 2050. Waste Manag. 2017, 62, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Sakellariou, N. Current and potential decommissioning scenarios for end-of-life composite wind blades. Energy Syst. 2017, 9, 981–1023. [Google Scholar] [CrossRef]
- Martínez, E.; Latorre-Biel, J.I.; Jiménez, E.; Sanz, F.; Blanco, J. Life cycle assessment of a wind farm repowering process. Renew. Sustain. Energy Rev. 2018, 93, 260–271. [Google Scholar] [CrossRef]
- Karoui, R.; Bacha, F.; Hasni, A.; Khadraoui, H. Analysis of the Repowering Wind Farm of Sidi-Daoud in Tunisia. IEEE Trans. Ind. Appl. 2019, 55, 3011–3023. [Google Scholar] [CrossRef]
- Teffera, B.; Assefa, B.; Bjorklund, A.; Assefa, G. Life cycle assessment of wind farms in Ethiopia. Int. J. Life Cycle Assess. 2021, 26, 76–96. [Google Scholar] [CrossRef]
- Kitzing, L.; Jensen, M.K.; Telsnig, T.; Lantz, E. Multifaceted drivers for onshore wind energy repowering and their implications for energy transition. Nat. Energy 2020, 5, 1012–1021. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Shepherd, T.J. 20% of US electricity from wind will have limited impacts on system efficiency and regional climate. Sci. Rep. 2020, 10, 541. [Google Scholar] [CrossRef]
- Syed, A.H.; Javed, A.; Asim Feroz, R.M.; Calhoun, R. Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations. Appl. Energy 2020, 268, 115050. [Google Scholar] [CrossRef]
- Kadhirvel, B.; Ramaswamy, S.; Kirubaharan, V.; Bastin, J.; ShobanaDevi, A.; Kanagavel, P.; Balaraman, K. Optimization of the wind farm layout by repowering the old wind farm and integrating solar power plants: A case study. Int. J. Renew. Energy Res. 2020, 10, 1287–1301. [Google Scholar]
- Bona, J.C.; Ferreira, J.C.E.; Ordoñez Duran, J.F. Analysis of scenarios for repowering wind farms in Brazil. Renew. Sustain. Energy Rev. 2021, 135, 110197. [Google Scholar] [CrossRef]
- Rajaram, H.R.; Krishnan, B.; Guru, B. Leveraging on repowering of wind sites for potential wind-solar hybrid capacities: A case study. Int. Energy J. 2021, 21, 183–192. [Google Scholar]
- Khan, M.A.; Javed, A.; Shakir, S.; Syed, A.H. Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective. Appl. Energy 2021, 298, 117229. [Google Scholar] [CrossRef]
- Volk, R.; Stallkamp, C.; Herbst, M.; Schultmann, F. Regional rotor blade waste quantification in Germany until 2040. Resour. Conserv. Recycl. 2021, 172, 105667. [Google Scholar] [CrossRef]
- Grau, L.; Jung, C.; Schindler, D. Sounding out the repowering potential of wind energy—A scenario-based assessment from Germany. J. Clean.Prod. 2021, 293, 126094. [Google Scholar] [CrossRef]
- Jezierski, A.; Mańkowski, C.; Śpiewak, R. Energy savings analysis in logistics of a wind farm repowering process: A case study. Energies 2021, 14, 5452. [Google Scholar] [CrossRef]
- Leite, G.D.N.P.; Weschenfelder, F.; Farias, J.G.D.; Kamal Ahmad, M. Economic and sensitivity analysis on wind farm end-of-life strategies. Renew. Sustain. Energy Rev. 2022, 160, 112273. [Google Scholar] [CrossRef]
- Simón-Martín, M.; Ciria-Garcés, T.; Rosales-Asensio, E.; González-Martínez, A. Multi-dimensional barrier identification for wind farm repowering in Spain through an expert judgment approach. Renew. Sustain. Energy Rev. 2022, 161, 112387. [Google Scholar] [CrossRef]
- Global Wind Energy Council. Global Wind Statistics 2017; GWEC: Brussels, Belgium, 2018. [Google Scholar]
- Barros, M.V.; Salvador, R.; Piekarski, C.M.; de Francisco, A.C.; Freire, F.M.C.S. Life cycle assessment of electricity generation: A review of the characteristics of existing literature. Int. J. Life Cycle Assess. 2020, 25, 36–54. [Google Scholar] [CrossRef]
- Global Wind Energy Council. Global Wind Report 2023; Global Wind Energy Council: Brussels, Belgium, 2023; Available online: https://gwec.net/globalwindreport2023/ (accessed on 5 May 2023).
- Chaurasiya, P.K.; Warudkar, V.; Ahmed, S. Wind energy development and policy in India: A review. Energy Strateg. Rev. 2019, 24, 342–357. [Google Scholar] [CrossRef]
- Welstead, J.; Hirst, R.; Keogh, D.; Robb, G.; Bainsfair, R. SNH Commissioned Report 591: Research and Guidance on Restoration and Decommissioning of Onshore Wind Farms. 2013. Available online: https://www.researchgate.net/profile/Jean-Welstead/publication/268214857_Scottish_Natural_Heritage_Research_and_guidance_on_the_restoration_and_decommissioning_of_onshore_wind_farms/links/5464da900cf2a8cf007c0484/Scottish-Natural-Heritage-Research-and-guidance-on-the-restoration-and-decommissioning-of-onshore-wind-farms.pdf (accessed on 2 March 2023).
- Jung, C.; Schindler, D.; Grau, L. Achieving Germany’s wind energy expansion target with an improved wind turbine siting approach. Energy Convers. Manag. 2018, 173, 383–398. [Google Scholar] [CrossRef]
- Nivedh, B.; Devi, R.; Sreevalsan, E. Repowering of Wind Farms—A Case Study. Wind. Eng. 2013, 37, 137–150. [Google Scholar] [CrossRef]
- Villena-Ruiz, R.; Ramirez, F.J.; Honrubia-Escribano, A.; Gómez-Lázaro, E. A techno-economic analysis of a real wind farm repowering experience: The Malpica case. Energy Convers. Manag. 2018, 172, 182–199. [Google Scholar] [CrossRef]
- Ministério de Minas e Energia. Plano Nacional de Eficiência Energética: Premissas e Diretrizes Básicas. Ministério de Minas e Energia Brasil. 2011; p. 156. Available online: www.mme.gov.br (accessed on 8 April 2023).
- De Mesquita, J.C.M. Estudo Sobre a Transição Energética na Matriz Elétrica Brasileira; Universidade Federal do Ceará: Fortaleza, Brazil, 2022. [Google Scholar]
- de Lucena Stuckert, G.F. As políticas públicas e o papel das agências reguladoras. Rev. Direito. Sociais Políticas Públicas. 2015, 1, 289–317. [Google Scholar] [CrossRef]
- Pronińska, K.; Księżopolski, K. Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications. Energies 2021, 14, 4883. [Google Scholar] [CrossRef]
- Morea, D.; Bittucci, L.; Cafaro, A.; Mango, F.; Murè, P. Can the Current State Support Mechanisms Help the Growth of Renewable Energies in Wind Markets? Sustainability 2021, 13, 12094. [Google Scholar] [CrossRef]
- Irfan, M.; Zhao, Z.Y.; Ahmad, M.; Mukeshimana, M.C. Critical factors influencing wind power industry: A diamond model based study of India. Energy Rep. 2019, 5, 1222–1235. [Google Scholar] [CrossRef]
- Martinez, A.; Iglesias, G. Multi-parameter analysis and mapping of the levelised cost of energy from floating offshore wind in the Mediterranean Sea. Energy Convers. Manag. 2021, 243, 114416. [Google Scholar] [CrossRef]
- Wind Europe. Decommissioning of Onshore Wind Turbines: Industry Guidance Document. Wind Eur. 2020, pp. 1–53. Available online: https://windeurope.org/data-and-analysis/product/decommissioning-of-onshore-wind-turbines/ (accessed on 8 April 2023).
- Sarder, M.D. Logistics Transportation Systems, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Han, J.; Mol, A.P.J.; Lu, Y.; Zhang, L. Onshore wind power development in China: Challenges behind a successful story. Energy Policy 2009, 37, 2941–2951. [Google Scholar] [CrossRef]
- Serrano-González, J.; Lacal-Arántegui, R. Technological evolution of onshore wind turbines—A market-based analysis. Wind Energy 2016, 19, 2171–2187. [Google Scholar] [CrossRef]
- Lacerda, L.S.; Junior, P.R.; Peruchi, R.S.; Chicco, G.; Rocha, L.C.S.; Aquila, G.; Junior, L.M.C. Microgeneration of Wind Energy for Micro and Small Businesses: Application of ANN in Sensitivity Analysis for Stochastic Economic Feasibility. IEEE Access 2020, 8, 73931–73946. [Google Scholar] [CrossRef]
- Corrêa Da Silva, R.; De Marchi Neto, I.; Silva Seifert, S. Electricity supply security and the future role of renewable energy sources in Brazil. Renew. Sustain. Energy Rev. 2016, 59, 328–341. [Google Scholar] [CrossRef]
- Castro-Santos, L.; Diaz-Casas, V. Economic Feasibility of Floating Offshore Wind Farms; Springer: Berlin/Heidelberg, Germany, 2016; p. 204. [Google Scholar]
- Kazem, H.A.; Albadi, M.H.; Al-Waeli, A.H.A.; Al-Busaidi, A.H.; Chaichan, M.T. Techno-economic feasibility analysis of 1MW photovoltaic grid connected system in Oman. Case Stud. Therm. Eng. 2017, 10, 131–141. [Google Scholar] [CrossRef]
- Poulsen, T.; Hasager, C.B. How expensive is expensive enough? Opportunities for cost reductions in offshore wind energy logistics. Energies 2016, 9, 437. [Google Scholar] [CrossRef]
- Irish Wind Energy Association—IWEA. Life-Cycle of an Onshore Wind Farm; IWEA: Dublin, Ireland, 2019; Available online: https://windenergyireland.com/images/files/iwea-onshore-wind-farm-report.pdf (accessed on 11 September 2023).
- dos Santos, M.A.T. Sistema de Medição de Desempenho para Operação e Manutenção de Parques Eólicos no Brasil; Universidade Federal do Rio Grande do Norte: Natal, Brazil, 2016. [Google Scholar]
- Castro-Santos, L.; Vizoso, A.F.; Camacho, E.M.; Piegiari, L. Costs and feasibility of repowering wind farms. Energy Sources Part B Econ. Plan. Policy 2016, 11, 974–981. [Google Scholar] [CrossRef]
- Varella Filho, H.C. Medição de Desempenho na Cadeia de Suprimentos da Energia Eólica: Proposta de um Conjunto de Indicadores de Desempenho; Universidade Federal do Rio Grande do Norte: Natal, Brazil, 2013. [Google Scholar]
- Draycott, S.; Szadkowska, I.; Silva, M.; Ingram, D.M. Assessing the macro-economic benefit of installing a farm of oscillating water columns in Scotland and Portugal. Energies 2018, 11, 2824. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; Campíñez-Romero, S.; Pérez-Molina, C.; Mur-Pérez, F. Repowering: An actual possibility for wind energy in Spain in a new scenario without feed-in-tariffs. Renew. Sustain. Energy Rev. 2015, 41, 319–337. [Google Scholar] [CrossRef]
- de Melo, D.C. Framework de um Sistema Especialista de Análise Econômica para Empreendimentos de Usinas Eólicas Offshore; UFRN: Natal, Brazil, 2020. [Google Scholar]
- Kaiser, M.J.; Snyder, B. Offshore Wind Energy Installation and Decommissioning Cost Estimation in the U.S. Outer Continental Shelf; National Technical Reports Library: Herndon, VA, USA, 2011; p. 340. [Google Scholar]
- Bose, A.; Dürr, T.; Klenke, R.A.; Henle, K. Collision sensitive niche profile of the worst affected bird-groups at wind turbine structures in the Federal State of Brandenburg, Germany. Sci. Rep. 2018, 8, 3777. [Google Scholar] [CrossRef] [PubMed]
- Piasecka, I.; Tomporowski, A.; Flizikowski, J.; Kruszelnicka, W.; Kasner, R.; Mroziński, A. Life cycle analysis of ecological impacts of an offshore and a land-basedwind power plant. Appl. Sci. 2019, 9, 231. [Google Scholar] [CrossRef]
- Bonou, A.; Laurent, A.; Olsen, S.I. Life cycle assessment of onshore and offshore wind energy-from theory to application. Appl. Energy 2016, 180, 327–337. [Google Scholar] [CrossRef]
- Schreiner, G.H.; Codonho, M.L.P.C.F. Descomissionamento ambiental: Análise da temática em empreendimentos de geração de energia eólica. Rev. Direito. Ambient. 2018, 3, 92. Available online: https://dspace.almg.gov.br/handle/11037/30738 (accessed on 18 September 2023).
- Tereza, J.C. Levantamento de Opinião Sobre o Descomissionamento de Parques Eólicos no Brasil. Universidade Federal de Santa Catarina: Florianópolis, Brazil, 2019; Available online: https://repositorio.ufsc.br/bitstream/handle/123456789/203255/TCCEngenhariadeEnergia-JaymaraChagasTereza.pdf?sequence=1&isAllowed=y (accessed on 21 August 2023).
- Nie, Y.; Zhang, G. Indicator system to evaluate the effectiveness and efficiency of China clean power systems. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1381–1401. [Google Scholar] [CrossRef]
- Eising, M.; Hobbie, H.; Möst, D. Future wind and solar power market values in Germany—Evidence of spatial and technological dependencies? Energy Econ. 2020, 86, 104638. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Newspaper articles/journals | Duplicate records |
Peer reviewed | Books, Book chapters, Theses, Dissertations and Technical Reports |
Full text available online | Reports |
Any language | Document published during conference |
Relevance to the research aim | Not related to the research aim |
End-of-life cycle of onshore wind farms | End-of-life cycle of other energy sources as well as offshore wind farms |
Selection Criteria |
---|
|
N | Authors | Year | Country | Journal |
---|---|---|---|---|
1 | Martínez et al. [29] | 2009 | Spain | International Journal of Life Cycle Assessment |
2 | Martínez et al. [30] | 2010 | Spain | Applied Energy |
3 | Min, Lou and Wang [31] | 2012 | USA | The Engineering Economist |
4 | Cherrington et al. [32] | 2012 | United Kingdom | Energy Policy |
5 | Zhang et al. [33] | 2012 | China | Computers & Chemical Engineering |
6 | Ortegon, Nies and Sutherland [13] | 2013 | USA | Journal of Cleaner Production |
7 | Gervásio et al. [34] | 2014 | Portugal | Engineering Structures |
8 | Prabu and Sasi [35] | 2015 | India | Wind Engineering |
9 | Liu and Barlow [36] | 2017 | England | Waste Management |
10 | Sakellariou [37] | 2017 | USA | Energy Systems |
11 | Martínez et al. [38] | 2018 | Spain | Renewable and Sustainable Energy Reviews |
12 | Karoui et al. [39] | 2019 | Tunisia | IEEE Transactions on Industry Applications |
13 | Teffera et al. [40] | 2020 | Tunisia | International Journal of Life Cycle Assessment |
14 | Hall, João and Knapp [15] | 2020 | England and Scotland | Environmental Impact Assessment Review |
15 | Kitzing et al. [41] | 2020 | Denmark | Nature Energy |
16 | Pryor, Barthelmie and Shepherd [42] | 2020 | USA | Scientific Reports |
17 | Syed et al. [43] | 2020 | Pakistan | Applied Energy |
18 | Boopath et al. [44] | 2020 | India | International Journal of Renewable Energy Research |
19 | Bona, Espindola and Duran [45] | 2021 | Brazil | Renewable and Sustainable Energy Reviews |
20 | Rajaram, Krishnan and Guru [46] | 2021 | India | International Energy Journal |
21 | Khan et al. [47] | 2021 | Pakistan | Applied Energy |
22 | Volk et al. [48] | 2021 | Germany | Resources, Conservation & Recycling |
23 | Grau, Jung and Schindler [49] | 2021 | Germany | Journal of Cleaner Production |
24 | Jezierski, Mańkowski and Śpiewak [50] | 2021 | France | Energies—MDPI |
25 | Leite et al. [51] | 2022 | Brazil | Renewable and Sustainable Energy Reviews |
26 | Simón-Martín et al. [52] | 2022 | Spain | Renewable and Sustainable Energy Reviews |
Ranking (Top 10) | Country | New Capacity Installed in 2022 (MW) | Accumulated Power/Installed Capacity (MW) | Representation (%) |
---|---|---|---|---|
1st | China | 32,579 | 333,998 | 39.7% |
2nd | United States | 8612 | 144,184 | 17.1% |
3rd | Germany | 2403 | 58,951 | 7.0% |
4th | India | 1847 | 41,930 | 5.0% |
5th | Spain | 1659 | 29,793 | 3.5% |
6th | Brazil | 4065 | 25,632 | 3.0% |
7th | France | 1590 | 20,653 | 2.5% |
8th | Canada | 1006 | 15,261 | 1.8% |
9th | United Kingdom | 502 | 14,575 | 1.7% |
10th | Sweden | 2441 | 14,393 | 1.7% |
Other Countries = | 12,112 | 142,528 | 16.9% | |
TOTAL = | 68,816 | 841,898 | 100% |
Journal | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Applied Energy | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 3 |
Computers & Chemical Engineering | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Energies—MDPI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Energy Policy | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Energy Systems | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
Engineering Structures | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Environmental Impact Assessment Review | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
IEEE Transactions on Industry Applications | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 |
International Journal of Life Cycle Assessment | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
International Energy Journal | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
International Journal of Renewable Energy Research | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Journal of Cleaner Production | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
Nature Energy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Resources, Conservation & Recycling | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Renewable and Sustainable Energy Reviews | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 4 |
Scientific Reports | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
The Engineering Economist | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Waste Management | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
Wind Engineering | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Total | 1 | 1 | 0 | 3 | 1 | 1 | 1 | 0 | 2 | 1 | 1 | 6 | 6 | 2 | 26 |
Continent | Number of Studies | Empirical | Theoretical | Decision | |||||
---|---|---|---|---|---|---|---|---|---|
Full Decommissioning (Deactivation) | Total Decommissioning with Full Repowering | Partial Decommissioning with Partial Repowering | Partial Decommissioning with Retrofit | Partial Decommissioning with Repowering and Hybridization | Partial Decommissioning with Repowering and Retrofit | ||||
North America | 04 | 0 | 04 | 02 | 01 | 01 | 00 | 00 | 00 |
South America | 02 | 0 | 02 | 00 | 00 | 02 | 00 | 00 | 00 |
Africa | 02 | 02 | 00 | 00 | 01 | 00 | 01 | 00 | 00 |
Asia | 06 | 01 | 05 | 00 | 00 | 03 | 01 | 02 | 00 |
Europe | 12 | 02 | 10 | 05 | 02 | 04 | 00 | 00 | 01 |
TOTAL | 26 | 05 | 21 | 07 | 04 | 10 | 02 | 02 | 01 |
Project Phase | Definition | Components |
---|---|---|
Feasibility | Refers to the time it takes to identify suitable locations for constructing a wind farm. |
|
Planning, licensing and authorization | The withdrawal of the necessary licenses to make a wind farm feasible. |
|
Pre-construction | Construction planning and negotiation of an energy sales contract are carried out. |
|
Construction | Phase in which civil works, electrical infrastructure and wind turbines are brought to the installation site. |
|
Commissioning | The checking, testing and adjustments of equipment until it is ready to operate safely and reliably. |
|
Operation | Operational phase of the project, in which the farm produces electrical energy from wind energy and is sold. |
|
Operational Deactivation | This is the deactivation of the farm, at which point the plant reaches the end of its service life. |
|
Service Life Extension (may or may not exist) | A reinvestment to extend the service life and operation of a wind farm. |
|
Wind Farm | What Does It Cover? | Cost Estimation | Revenue Estimate |
---|---|---|---|
Whitelee Wind Farm | Removal of turbines, upper level of foundations, tracks, cables, substation, associated constructions and expansion of the visitor center for future use. | GBP 23,000/turbine, GBP 4651/blade recycling turbine, GBP 7938/turbine foundation, GBP 3761/track turbine, GBP 10,027/turbine cable removal, GBP 60,000/substation, associated constructions, visitor center improvement. | GBP 78,690/turbine (resale of steel, copper, cast iron) Positive balance estimated between GBP 3 million and 8.1 million. |
Carraig Gheal Wind Farm | Removal of all turbines and associated electrical components, turbines split on site, bases 1.0 m deep, buried cables left on site, cut and filled above soil. | GBP 300 tonnes/turbine estimate. Estimated total cost between GBP 27,438 and GBP 548,778/turbine (including scrap value and inflation). | GBP 200/tonne scrap value. |
Gwynt y Môr Ltd. Offshore Wind Farm | Removal of installations, waste management, inspections, monitoring, maintenance and management where the installation is not completely removed. | GBP 400,000/turbine. Decommissioning fund estimated at GBP 106 million to be placed in escrow account (10/year). | Not estimated. |
New Grange Wind Farm | Removal of towers, bases (48-inch depth), removal collection system, seeding and revegetation. | Gross cost—USD 88,955/turbine. Net cost—USD 53,955/turbine. | USD 35,000. |
Stony Creek Wind Farm | Removal of blades, hub, nacelle, tower, foundation and grounding/restoration. | Net cost—USD 17,494/turbine. | Approximately USD 10,000/turbine. |
Little Raith | Removal of turbines, foundations (1 m), anemometry mast, access roads, control construction, rigid crane supports, soil and seeds to affected areas. | Net cost—GBP 15,000/turbine. | Not informed |
Generation/Reduction in Environmental Impacts | Cause/Consequence | Decision Type | Studies (SBR Authors) |
---|---|---|---|
Waste Treatment/Disposal Policy:
| Cause | Deactivation/Service Life Extension | [41]; [38]; [37]; [36]; [32]; [29]. |
Investigation of better materials for the production of wind components. | Cause | Deactivation/Service Life Extension | [41]; [32]. |
Soil Pollution | Consequence (Final Waste Disposal) | Deactivation/Service Life Extension | [15]; [41]. |
Groundwater pollution | Consequence (Final Waste Disposal) | Deactivation/Service Life Extension | [15]; [41]. |
Visual pollution | Consequence (Maintenance or Reduction in the Number of Towers/Wind Generators) | Service Life Extension | [52]; [45]; [15]; [41]; [39]. |
Noise pollution | Consequence | Service Life Extension | [45]; [15]; [41]. |
Impacts on fauna, flora and local biodiversity | Consequence | Service Life Extension | [15]; [41]; [40]. |
Emission of carbon dioxide and greenhouse gases | Consequence | Service Life Extension | [15]; [41]; [13]; [29]. |
Toxicity in humans | Consequence | Service Life Extension | [40]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agra Neto, J.; González, M.O.A.; Castro, R.L.P.d.; Melo, D.C.d.; Aiquoc, K.M.; Santiso, A.M.; Vasconcelos, R.M.d.; Souza, L.H.d.; Cabral, E.L.d.S. Factors Influencing the Decision-Making Process at the End-of-Life Cycle of Onshore Wind Farms: A Systematic Review. Energies 2024, 17, 848. https://doi.org/10.3390/en17040848
Agra Neto J, González MOA, Castro RLPd, Melo DCd, Aiquoc KM, Santiso AM, Vasconcelos RMd, Souza LHd, Cabral ELdS. Factors Influencing the Decision-Making Process at the End-of-Life Cycle of Onshore Wind Farms: A Systematic Review. Energies. 2024; 17(4):848. https://doi.org/10.3390/en17040848
Chicago/Turabian StyleAgra Neto, João, Mario Orestes Aguirre González, Rajiv Lucas Pereira de Castro, David Cassimiro de Melo, Kezauyn Miranda Aiquoc, Andressa Medeiros Santiso, Rafael Monteiro de Vasconcelos, Lucas Honorato de Souza, and Eric Lucas dos Santos Cabral. 2024. "Factors Influencing the Decision-Making Process at the End-of-Life Cycle of Onshore Wind Farms: A Systematic Review" Energies 17, no. 4: 848. https://doi.org/10.3390/en17040848
APA StyleAgra Neto, J., González, M. O. A., Castro, R. L. P. d., Melo, D. C. d., Aiquoc, K. M., Santiso, A. M., Vasconcelos, R. M. d., Souza, L. H. d., & Cabral, E. L. d. S. (2024). Factors Influencing the Decision-Making Process at the End-of-Life Cycle of Onshore Wind Farms: A Systematic Review. Energies, 17(4), 848. https://doi.org/10.3390/en17040848