Renewable Power Systems: A Comprehensive Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
- Time—2000–2023;
- Language—English;
- Keywords—renewable power systems;
- Boolean operators—AND.
- Examine trends in publications related to renewable power systems;
- Identify key authors who have substantially contributed to the field of renewable power systems;
- Analyze the focus on renewable power systems across different countries;
- Identify leading countries investing in research on renewable power systems;
- Review the most cited works in the area of renewable power systems.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IRENA. Renewable Capacity Statistics 2023, International Renewable Energy Agency, Abu Dhabi. 2023. Available online: www.irena.org/Data (accessed on 7 January 2023).
- Energy. Energy Transition Investment Trends 2024 BloombergNEF’s. 2024. Available online: https://about.bnef.com/energy-transition-investment/ (accessed on 7 January 2023).
- Statista. Energy. 2024. Available online: https://www.statista.com/ (accessed on 7 January 2023).
- Szczepańska-Woszczyna, K.; Vysochyna, A.; Kwilinski, A. Public Health Efficiency and Country Competitiveness: Empirical Study in Pre-Pandemic and Pandemic Periods. Forum Sci. Oeconomi 2024, 12, 151–166. [Google Scholar] [CrossRef]
- Kwilinski, A.; Rebilas, R.; Lazarenko, D.; Stezhko, N.; Dzwigol, H. The Impact of the COVID-19 Pandemic on the Evolution of Investment Markets in Central and Eastern Europe. Forum Sci. Oeconomia 2023, 11, 157–186. [Google Scholar] [CrossRef]
- European Commission Renewable Energy Directive. Available online: https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-directive_en (accessed on 7 January 2023).
- Deorah, S.M.; Abhyankar, N.; Arora, S.; Chawla, K.; Phadke, A.A. Assessing the Key Requirements for 450 GW of Renewable Capacity in India by 2030; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2021. [Google Scholar]
- Afrianda, R.; Pariaman, H.; Hafiza, J. Sustainability of electricity company business strategies by implementing energy management in wind-based hybrid complexes hydrogen generation and storage at electricity companies in Indonesia. Int. J. Econ. Lit. 2024, 2, 1339–1355. [Google Scholar]
- Nie, C.; Pan, P.; Feng, Y. Green Public Finance and “Dual Control” of Carbon Emissions: New Evidence from China. Systems 2024, 12, 123. [Google Scholar] [CrossRef]
- Ssembatya, M.; Claridge, D.E. Quantitative fault detection and diagnosis methods for vapor compression chillers: Exploring the potential for field-implementation. Renew. Sustain. Energy Rev. 2024, 197, 114418. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, g7647. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Kwilinski, A. The Relationship between Sustainable Development and Digital Transformation: Bibliometric Analysis. Virtual Econ. 2023, 6, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Lagodiienko, N.; Yakushko, I. Digital innovations in taxatin: Bibliometric analysis. Mark. Manag. Innov. 2021, 3, 66–77. [Google Scholar] [CrossRef]
- Panchenko, V.; Harust, Y.; Us, Y.; Korobets, O.; Pavlyk, V. Energy-Efficient Innovations: Marketing, Management and Law Supporting. Mark. Manag. Innov. 2020, 1, 256–264. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. How to normalize cooccurrence data? An analysis of some well-known similarity measures. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1635–1651. [Google Scholar]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science mapping software tools: Review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Newman, M.E. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 2001, 98, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Opsahl, T.; Agneessens, F.; Skvoretz, J. Node centrality in weighted networks: Generalizing degree and shortest paths. Soc. Netw. 2010, 32, 245–251. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact: Methods and Practice; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer: Cham, Switzerland, 2014; pp. 285–320. [Google Scholar]
- United Nations. Paris Agreement. 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 7 January 2023).
- Lazard. Lazard’s Levelized Cost of Energy Analysis—Version 14.0. 2020. Available online: https://www.lazard.com/media/kwrjairh/lazards-levelized-cost-of-energy-version-140.pdf (accessed on 7 January 2023).
- Chen, Y.; Lyulyov, O.; Pimonenko, T.; Kwilinski, A. Green development of the country: Role of macroeconomic stability. Energy Environ. 2023. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Unlocking Sustainable Value through Digital Transformation: An Examination of ESG Performance. Information 2023, 14, 444. [Google Scholar] [CrossRef]
- Dunlap, R.E. Trends in Public Opinion toward Environmental Issues: 1965–1990. In American Environmentalism; 2014; pp. 89–116. Available online: https://www.taylorfrancis.com/chapters/edit/10.4324/9781315799193-8/trends-public-opinion-toward-environmental-issues-1965–1990-riley-dunlap (accessed on 7 January 2023).
- Qian, W.; Parker, L.; Zhu, J. Corporate environmental reporting in the China context: The interplay of stakeholder salience, socialist ideology and state power. Br. Account. Rev. 2024, 56, 101198. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Reducing Transport Sector CO2 Emissions Patterns: Environmental Technologies and Renewable Energy. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100217. [Google Scholar] [CrossRef]
- Keramidas, K.; Fosse, F.; Diaz Vazquez, A.; Dowling, P.; Garaffa, R.; Després, J.; Russ, H.P.; Schade, B.; Schmitz, A.; Soria Ramirez, A.; et al. Global Energy and Climate Outlook 2021: Advancing toward Climate Neutrality, EUR 30861 EN; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Zhang, S.; Andrews-Speed, P.; Zhao, X. The Political Economy of China’s Energy Policy: Explaining the Policy-Making Process. Energy Policy 2019, 129, 389–400. [Google Scholar]
- Li, H.; Zhang, X.; Ma, L. China’s Renewable Energy Development: Policy, Industry, and Business Perspectives. Renew. Sustain. Energy Rev. 2021, 137, 110602. [Google Scholar]
- Smith, B.; Brown, A. Advancing Renewable Energy Technology Development in the United States: An Analysis of Government Support Mechanisms. Energy Res. Soc. Sci. 2020, 66, 101488. [Google Scholar]
- Kumar, A.; Sarma, V. India’s Renewable Energy Strategy Post-COP21: Assessing the Challenges and Opportunities. Energy Policy 2021, 148, 111965. [Google Scholar]
- Moskalenko, B.; Lyulyov, O.; Pimonenko, T. The investment attractiveness of countries: Coupling between core dimensions. Forum Sci. Oeconomia 2022, 10, 153–172. [Google Scholar] [CrossRef]
- Narayan, V.; Detchon, R.; Hochberg, M. The International Solar Alliance: A Global Effort to Advance Solar Energy in 121 Countries. One Earth 2020, 2, 317–320. [Google Scholar]
- Jacobsson, S.; Lauber, V. The politics and policy of energy system transformation—Explaining the German diffusion of renewable energy technology. Energy Policy 2020, 34, 256–276. [Google Scholar] [CrossRef]
- McGowan, F.; Sauter, R. The UK’s Climate Change Act: A Model for Effective Governance? Energy Sustain. Dev. 2020, 57, 59–66. [Google Scholar]
- Szczepańska-Woszczyna, K.; Gatnar, S. Key Competences of Research and Development Project Managers in High Technology Sector. Forum Sci. Oeconomia 2022, 10, 107–130. [Google Scholar] [CrossRef]
- Dacko-Pikiewicz, Z. Building a family business brand in the context of the concept of stakeholder-oriented value. Forum Sci. Oeconomia 2019, 7, 37–51. [Google Scholar] [CrossRef]
- Kwilinski, A. Implementation of Blockchain Technology in Accounting Sphere. Acad. Account. Financ. Stud. J. 2019, 23, 1–6. [Google Scholar]
- Szczepańska-Woszczyna, K.; Gedvilaitė, D.; Nazarko, J.; Stasiukynas, A.; Rubina, A. Assessment of Economic Convergence among Countries in the European Union. Technol. Econ. Dev. Econ. 2022, 28, 1572–1588. [Google Scholar] [CrossRef]
- Liu, G.; Zeng, J.; Wu, Y.; Liao, S. Multicriteria techno-economic analysis of solar-wind-storage hybrid power systems for remote islands in the South China Sea. IET Renew. Power Gener. 2022, 16, 3058–3072. [Google Scholar] [CrossRef]
- He, W.; Xu, Q.; Liu, S.; Wang, T.; Wang, F.; Wu, X.; Chen, Z. Analysis on data center power supply system based on renewable energy. Renew. Energy 2024, 222, 119865. [Google Scholar] [CrossRef]
- Li, S.; Ye, C.; Ding, Y.; Song, Y.; Bao, M. Reliability Assessment of Renewable Power Systems. IEEE Trans. Power Syst. 2023, 38, 3924–3938. [Google Scholar] [CrossRef]
- Zappa, W.; Junginger, M.; van den Broek, M. Is a 100% renewable European power system feasible by 2050? Appl. Energy 2019, 233–234, 1027–1050. [Google Scholar] [CrossRef]
- Zeyghami, M.; Goswami, D.Y.; Stefanakos, E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Sol. Energy Mater. Sol. Cells 2018, 178, 115–128. [Google Scholar] [CrossRef]
- Wu, H.; Sun, K.; Ding, S.; Xing, Y. Topology derivation of nonisolated three-port DC-DC converters from DIC and DOC. IEEE Trans. Power Electron. 2013, 28, 3297–3307. [Google Scholar] [CrossRef]
- Sovacool, B.K. Rejecting renewables: The sociotechnical impediments to renewable electricity in the United States. Energy Policy 2009, 37, 4500–4513. [Google Scholar] [CrossRef]
- Gee, A.M.; Robinson, F.V.P.; Dunn, R.W. Analysis of battery lifetime extension in a small-scale wind-energy system using supercapacitors. IEEE Trans. Energy Convers. 2013, 28, 24–33. [Google Scholar] [CrossRef]
- Dowling, J.A.; Rinaldi, K.Z.; Ruggles, T.H.; Davis, S.J.; Yuan, M.; Tong, F.; Lewis, N.S.; Caldeira, K. Role of Long-Duration Energy Storage in Variable Renewable Electricity Systems. Joule 2020, 4, 1907–1928. [Google Scholar] [CrossRef]
- Ghenai, C.; Salameh, T.; Merabet, A. Technico-economic analysis of off grid solar PV/Fuel cell energy system for residential community in desert region. Int. J. Hydrogen Energy 2020, 45, 11460–11470. [Google Scholar] [CrossRef]
- Odou, O.D.T.; Bhandari, R.; Adamou, R. Hybrid off-grid renewable power system for sustainable rural electrification in Benin. Renew. Energy 2020, 145, 1266–1279. [Google Scholar] [CrossRef]
- Luo, X.; Sun, J.; Wang, L.; Wang, W.; Zhao, W.; Wu, J.; Wang, J.-H.; Zhang, Z. Short-term wind speed forecasting via stacked extreme learning machine with generalized correntropy. IEEE Trans. Ind. Inform. 2018, 14, 4963–4971. [Google Scholar] [CrossRef]
- Ram, M.; Aghahosseini, A.; Breyer, C. Job creation during the global energy transition toward 100% renewable power system by 2050. Technol. Forecast. Soc. Chang. 2020, 151, 119682. [Google Scholar] [CrossRef]
- Hussain, H.I.; Haseeb, M.; Kamarudin, F.; Dacko-Pikiewicz, Z.; Szczepańska-Woszczyna, K. The role of globalization, economic growth and natural resources on the ecological footprint in Thailand: Evidence from nonlinear causal estimations. Processes 2021, 9, 1103. [Google Scholar] [CrossRef]
- Zhanibek, A.; Abazov, R.; Khazbulatov, A. Digital Transformation of a Country’s Image: The Case of the Astana International Finance Centre in Kazakhstan. Virtual Econ. 2022, 5, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. The Role of Country’s Green Brand and Digitalization in Enhancing Environmental, Social, and Governance Performance. Econ. Environ. 2023, 87, 613. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Pican, E.; Leahy, M. The technical and economic implications of integrating fluctuating renewable energy using energy storage. Renew. Energy 2012, 43, 47–60. [Google Scholar] [CrossRef]
- Conlon, T.; Waite, M.; Modi, V. Assessing new transmission and energy storage in achieving increasing renewable generation targets in a regional grid. Appl. Energy 2019, 250, 1085–1098. [Google Scholar] [CrossRef]
- Kebede, A.A.; Kalogiannis, T.; Van Mierlo, J.; Berecibar, M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew. Sustain. Energy Rev. 2022, 159, 112213. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Spillover Effects of Green Finance on Attaining Sustainable Development: Spatial Durbin Model. Computation 2023, 11, 199. [Google Scholar] [CrossRef]
- Kunskaja, S.; Bauer, J.F.; Budzyński, A.; Jitea, I.C. A research analysis: The implementation of innovative energy technologies and their alignment with SDG 12. East.-Eur. J. Enterp. Technol. 2023, 5, 6–25. [Google Scholar] [CrossRef]
- Du, X.; Xie, W.; Guan, W. Energy transition in sport and public facilities: Pioneering sustainable economic pathways. Econ. Chang. Restruct. 2024, 57, 44. [Google Scholar] [CrossRef]
- Letunovska, N.; Abazov, R.; Chen, Y. Framing a Regional Spatial Development Perspective: The Relation between Health and Regional Performance. Virtual Econ. 2022, 5, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.A.; Haq, M.A.U.; Soomro, Y.A. Factors influencing consumers’ green purchase behavior: Green advertising as moderator. Mark. Manag. Innov. 2020, 4, 144–153. [Google Scholar] [CrossRef]
- Alawad, S.M.; Mansour, R.B.; Al-Sulaiman, F.A.; Rehman, S. Renewable energy systems for water desalination applications: A comprehensive review. Energy Convers. Manag. 2023, 286, 117035. [Google Scholar] [CrossRef]
- Malka, L.; Bidaj, F.; Kuriqi, A.; Jaku, A.; Roçi, R.; Gebremedhin, A. Energy system analysis with a focus on future energy demand projections: The case of Norway. Energy 2023, 272, 127107. [Google Scholar] [CrossRef]
- Panda, A.; Dauda, A.K.; Chua, H.; Tan, R.R.; Aviso, K.B. Recent advances in the integration of renewable energy sources and storage facilities with hybrid power systems. Clean. Eng. Technol. 2023, 12, 100598. [Google Scholar] [CrossRef]
- Musolino, M.; Maggio, G.; D’Aleo, E.; Nicita, A. Three case studies to explore relevant features of emerging renewable energy communities in Italy. Renew. Energy 2023, 210, 540–555. [Google Scholar] [CrossRef]
- Gavkalova, N.; Akimova, L.; Zilinska, A.; Avedyan, L.; Akimov, O.; Kyrychenko, Y. Efficiency in the context of ensuring sustainable territorial development. Financ. Credit. Act. Probl. Theory Pract. 2022, 4, 234–243. [Google Scholar] [CrossRef]
- Yermachenko, V.; Bondarenko, D.; Akimova, L.; Karpa, M.; Akimov, O.; Kalashnyk, N. Theory and Practice of Public Management of Smart Infrastructure in the Conditions of the Digital Society’Development: Socioeconomic Aspects. Econ. Aff. 2023, 68, 617–633. [Google Scholar]
- Kwilinski, A. E-Commerce and Sustainable Development in the European Union: A Comprehensive Analysis of SDG2, SDG12, and SDG13. Forum Sci. Oeconomia 2023, 11, 87–107. [Google Scholar] [CrossRef]
- Nyenno, I.; Truba, V.; Tokarchuk, L. Managerial Future of the Artificial Intelligence. Virtual Econ. 2023, 6, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six Transformations to achieve the Sustainable Development Goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Veckalne, R.; Tambovceva, T. The Role of Digital Transformation in Education in Promoting Sustainable Development. Virtual Econ. 2022, 5, 65–86. [Google Scholar] [CrossRef] [PubMed]
- Kwilinski, A. Understanding the Nonlinear Effect of Digital Technology Development on CO2 Reduction. Sustain. Dev. 2024, 1–15. [Google Scholar] [CrossRef]
Countries | Documents | Countries | Documents | Countries | Documents |
---|---|---|---|---|---|
China | 148 | Germany | 44 | Egypt | 27 |
United States | 77 | United Kingdom | 38 | Canada | 23 |
India | 64 | Australia | 29 | Saudi Arabia | 20 |
United Arab Emirates | 19 |
Researchers | Country | Number of Publications in Scopus | IC | AC | H | |
---|---|---|---|---|---|---|
Total | RPS | |||||
Wu H. | China | 239 | 16 | 6.3% | 3.7% | 39 |
Xing Y. | China | 325 | 15 | 4.1% | 3.1% | 45 |
Ghenai C. | United Arab Emirates | 212 | 14 | 63.0% | – | 34 |
Magdy G. | Egypt | 65 | 11 | 89.3% | – | 21 |
Sun K. | China | 351 | 7 | 32.8% | 3.3% | 41 |
Elbaset A.A. | Egypt | 107 | 6 | 54.8% | 1.2% | 21 |
Mitani Y. | Japan | 318 | 6 | 67.4% | 2.9% | 34 |
Shabib G. | Egypt | 60 | 6 | 75.0% | – | 15 |
Zhang J. | China | 25 | 6 | – | – | 11 |
Bakeer A. | Egypt | 67 | 4 | 60.9% | – | 14 |
Breyer C. | Finland | 217 | 4 | 36.5% | 10% | 64 |
Flynn D. | Ireland | 218 | 4 | 41.7% | 23.3% | 39 |
Title | Authors | Citations | Organizations—Sponsor | SDGs |
---|---|---|---|---|
Is a 100% renewable European power system feasible by 2050? | Zappa W., Junginger M., and van den Broek, M. [46] | 397 | n/a | SDG7; SDG13 |
A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling | Zeyghami M., Goswami D. Y., and Stefanakos E. [47] | 261 | n/a | SDG9 |
Topology derivation of nonisolated three-port DC-DC converters from DIC and DOC | Wu H., Sun K., Ding S., and Xing Y. [48] | 254 | n/a | n/a |
Rejecting renewables: The sociotechnical impediments to renewable electricity in the United States | Sovacool B. K. [49] | 250 | Ministry of Education—Singapore | SDG7 |
Analysis of battery lifetime extension in a small-scale wind-energy system using supercapacitors | Gee A. M., Robinson F. V. P., and Dunn R. W. [50] | 238 | n/a | SDG7 |
Role of Long-Duration Energy Storage in Variable Renewable Electricity Systems | Dowling J. A., Rinaldi K. Z., Ruggles T. H., Davis S. J., Yuan M., Tong F., Lewis N. S., and Caldeira K. [51] | 229 | Low Carbon Energy Science and Policy; Gordon and Betty Moore Foundation; Gates Ventures | SDG7 |
Technico-economic analysis of off grid solar PV/Fuel cell energy system for residential community in desert region | Ghenai C., Salameh T., and Merabet A. [52] | 202 | n/a | SDG7; SDG13 |
Hybrid off-grid renewable power system for sustainable rural electrification in Benin | Odou O. D. T., Bhandari R., and Adamou R. [53] | 199 | Bundesministerium für Bildung und Forschung | SDG7; SDG13; SDG17 |
Short-term wind speed forecasting via stacked extreme learning machine with generalized correntropy | Luo X., Sun J., Wang L., Wang W., Zhao W., Wu J., Wang J.-H., and Zhang Z. [54] | 199 | National Natural Science Foundation of China; National Taipei University of Technology; National Basic Research Program of China; Fundamental Research Funds for the Central Universities | n/a |
Job creation during the global energy transition toward 100% renewable power system by 2050 | Ram M., Aghahosseini A., and Breyer C. [55] | 198 | Deutsche Bundesstiftung Umwelt | SDG7; ASG8; SDG13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Renewable Power Systems: A Comprehensive Meta-Analysis. Energies 2024, 17, 3989. https://doi.org/10.3390/en17163989
Kwilinski A, Lyulyov O, Pimonenko T. Renewable Power Systems: A Comprehensive Meta-Analysis. Energies. 2024; 17(16):3989. https://doi.org/10.3390/en17163989
Chicago/Turabian StyleKwilinski, Aleksy, Oleksii Lyulyov, and Tetyana Pimonenko. 2024. "Renewable Power Systems: A Comprehensive Meta-Analysis" Energies 17, no. 16: 3989. https://doi.org/10.3390/en17163989
APA StyleKwilinski, A., Lyulyov, O., & Pimonenko, T. (2024). Renewable Power Systems: A Comprehensive Meta-Analysis. Energies, 17(16), 3989. https://doi.org/10.3390/en17163989