Experimental Investigation on the Thermophysical and Rheological Behavior of Aqueous Dual Hybrid Nanofluid in Flat Plate Solar Collectors
Abstract
:Highlights
- Hybrid nanofluids have been used, including CF-CNTs and the hBN, as working fluid;
- Successfulness of functionalization and decoration was validated by FTIR, XRD, EDS, FESEM, and HRTEM;
- The thermal efficiency increases to 24.8% for mixed nanofluids;
- Application of nanofluids may reduce the price of the working fluid.
Abstract
1. Introduction
1.1. Research Background and Motivation
1.2. Literature Review
1.3. Research Objectives
2. Methodology
2.1. Preparation and Fabrication of the Hybrid Nanofluid
2.2. Performance of Flat Plate Solar Collector (FPSC)
2.3. Characterization Analysis
2.4. Experimental Procedure and Calculation
2.5. Uncertainty Analysis
3. Results and Discussion
3.1. Characterization of hBN@CNTs Hybrid Nanofluid
3.2. Thermophysical Properties of Nanofluids
3.3. Water as Working Fluid
3.4. Hybrid Nanofluid as the Working Fluid
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tao, H.; Ewees, A.A.; Al-Sulttani, A.O.; Beyaztas, U.; Hameed, M.M.; Salih, S.Q.; Armanuos, A.M.; Al-Ansari, N.; Voyant, C.; Shahid, S.; et al. Global solar radiation prediction over North Dakota using air temperature: Development of novel hybrid intelligence model. Energy Rep. 2021, 7, 136–157. [Google Scholar]
- Voyant, C.; Notton, G.; Duchaud, J.-L.; Almorox, J.; Yaseen, Z.M. Solar irradiation prediction intervals based on Box–Cox transformation and univariate representation of periodic autoregressive model. Renew. Energy Focus 2020, 33, 43–53. [Google Scholar]
- Guo, H.; Tao, H.; Salih, S.Q.; Yaseen, Z.M. Optimized parameter estimation of a PEMFC model based on improved Grass Fibrous Root Optimization Algorithm. Energy Rep. 2020, 6, 1510–1519. [Google Scholar]
- Ajeena, A.M.; Víg, P.; Farkas, I. A comprehensive analysis of nanofluids and their practical applications for flat plate solar collectors: Fundamentals, thermophysical properties, stability, and difficulties. Energy Rep. 2022, 8, 4461–4490. [Google Scholar]
- Liu, S.; Afan, H.A.; Aldlemy, M.S.; Al-Ansari, N.; Yaseen, Z.M. Energy analysis using carbon and metallic oxides-based nanomaterials inside a solar collector. Energy Rep. 2020, 6, 1373–1381. [Google Scholar]
- Alawi, O.A.; Kamar, H.M.; Abdelrazek, A.H.; Mallah, A.; Mohammed, H.A.; Abdulla, A.I.; Gatea, H.A.; Khiadani, M.; Kazi, S.; Yaseen, Z.M. Hydrothermal and energy analysis of flat plate solar collector using copper oxide nanomaterials with different morphologies: Economic performance. Sustain. Energy Technol. Assess. 2022, 49, 101772. [Google Scholar]
- Altun, A.; Şara, O.N.; Şimşek, B. A comprehensive statistical approach for determining the effect of two non-ionic surfactants on thermal conductivity and density of Al2O3–water-based nanofluids. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127099. [Google Scholar]
- Pandey, H.; Gupta, N.K. A descriptive review of the thermal transport mechanisms in mono and hybrid nanofluid-filled heat pipes and current developments. Therm. Sci. Eng. Prog. 2022, 31, 101281. [Google Scholar]
- Bamisile, O.; Cai, D.; Adun, H.; Adedeji, M.; Dagbasi, M.; Dika, F.; Huang, Q. A brief review and comparative evaluation of nanofluid application in solar parabolic trough and flat plate collectors. Energy Rep. 2022, 8, 156–166. [Google Scholar]
- Sheikholeslami, M.; Farshad, S.A.; Ebrahimpour, Z.; Said, Z. Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: A review. J. Clean. Prod. 2021, 293, 126119. [Google Scholar]
- Xiong, Q.; Hajjar, A.; Alshuraiaan, B.; Izadi, M.; Altnji, S.; Shehzad, S.A. State-of-the-art review of nanofluids in solar collectors: A review based on the type of the dispersed nanoparticles. J. Clean. Prod. 2021, 310, 127528. [Google Scholar]
- Alqaed, S.; Mustafa, J.; Sharifpur, M.; Cheraghian, G. Using nanoparticles in solar collector to enhance solar-assisted hot process stream usefulness. Sustain. Energy Technol. Assessments 2022, 52, 101992. [Google Scholar]
- Alqaed, S.; Almehmadi, F.A.; Mustafa, J.; Husain, S.; Cheraghian, G. Effect of nano phase change materials on the cooling process of a triangular lithium battery pack. J. Energy Storage 2022, 51, 104326. [Google Scholar] [CrossRef]
- Mustafa, J.; Almehmadi, F.A.; Alqaed, S. A novel study to examine dependency of indoor temperature and PCM to reduce energy consumption in buildings. J. Build. Eng. 2022, 51, 104249. [Google Scholar] [CrossRef]
- Alqaed, S.; Mustafa, J.; Almehmadi, F.A. The effect of using phase change materials in a solar wall on the number of times of air conditioning per hour during day and night in different thicknesses of the solar wall. J. Build. Eng. 2022, 51, 104227. [Google Scholar] [CrossRef]
- Mustafa, J.; Alqaed, S.; Sharifpur, M. Incorporating nano-scale material in solar system to reduce domestic hot water energy demand. Sustain. Energy Technol. Assessments 2022, 49, 101735. [Google Scholar]
- Farajzadeh, E.; Movahed, S.; Hosseini, R. Experimental and numerical investigations on the effect of Al2O3/TiO2H2O nanofluids on thermal efficiency of the flat plate solar collector. Renew. Energy 2018, 118, 122–130. [Google Scholar]
- Verma, S.K.; Tiwari, A.K.; Tiwari, S.; Chauhan, D.S. Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Sol. Energy 2018, 167, 231–241. [Google Scholar] [CrossRef]
- Hussein, O.A.; Habib, K.; Muhsan, A.S.; Saidur, R.; Alawi, O.A.; Ibrahim, T.K. Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid. Sol. Energy 2020, 204, 208–222. [Google Scholar]
- Okonkwo, E.C.; Wole-Osho, I.; Kavaz, D.; Abid, M.; Al-Ansari, T. Thermodynamic evaluation and optimization of a flat plate collector operating with alumina and iron mono and hybrid nanofluids. Sustain. Energy Technol. Assessments 2020, 37, 100636. [Google Scholar]
- Wole-Osho, I.; Okonkwo, E.C.; Kavaz, D.; Abbasoğlu, S. Energy, Exergy, and Economic Investigation of the Effect of Nanoparticle Mixture Ratios on the Thermal Performance of Flat Plate Collectors Using Al2O3–ZnO Hybrid Nanofluid. J. Energy Eng. 2021, 147, 04020083. [Google Scholar]
- Sundar, L.S.; Mesfin, S.; Said, Z.; Singh, M.K.; Punnaiah, V.; Sousa, A.C.M. Energy, economic, environmental and heat transfer analysis of a solar flat-plate collector with pH-treated Fe3O4/water nanofluid. Int. J. Energy Clean Environ. 2021, 22, 55–98. [Google Scholar] [CrossRef]
- Sundar, L.S.; Misganaw, A.H.; Singh, M.K.; Sousa, A.C.M.; Ali, H.M. Efficiency analysis of thermosyphon solar flat plate collector with low mass concentrations of ND–Co3O4 hybrid nanofluids: An experimental study. J. Therm. Anal. Calorim. 2021, 143, 959–972. [Google Scholar]
- Mustafa, J.; Alqaed, S.; Sharifpur, M. Evaluation of energy efficiency, visualized energy, and production of environmental pollutants of a solar flat plate collector containing hybrid nanofluid. Sustain. Energy Technol. Assessments 2022, 53, 102399. [Google Scholar]
- Hussein, O.A.; Habib, K.; Nasif, M.; Saidur, R.; Muhsan, A.S. Investigation of Stability, Dispersion, and Thermal Conductivity of Functionalized Multi-Walled Carbon Nanotube Based Nanofluid; IOP Publishing: Bristol, UK, 2020; Volume 863. [Google Scholar]
- Fadhillahanafi, N.; Leong, K.; Risby, M. Stability and Thermal Conductivity Characteristics of Carbon Nanotube based Nanofluids. Int. J. Automot. Mech. Eng. 2013, 8, 1376–1384. [Google Scholar] [CrossRef]
- Kalogirou, S. Solar Energy Engineering. Sol. Energy Eng. 2009, 116, 67–68. [Google Scholar]
- Abernethy, R.B.; Benedict, R.P.; Dowdell, R.B. ASME measurement uncertainty. J. Fluids Eng. 1985, 107, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Moffat, R.J. Using Uncertainty Analysis in the Planning of an Experiment. J. Fluids Eng. 1985, 107, 173–178. [Google Scholar]
- Sundar, L.S.; Singh, M.K.; Bidkin, I.; Sousa, A.C. Experimental investigations in heat transfer and friction factor of magnetic Ni nanofluid flowing in a tube. Int. J. Heat Mass Transf. 2014, 70, 224–234. [Google Scholar]
- Saleh, T.A.; Gupta, V.K. Characterization of the Chemical Bonding between Al2O3 and Nanotube in MWCNT/Al2O3 nanocomposite. Curr. Nanosci. 2012, 8, 739–743. [Google Scholar]
- Sankararamakrishnan, N.; Jaiswal, M.; Verma, N. Composite nanofloral clusters of carbon nanotubes and activated alumina: An efficient sorbent for heavy metal removal. Chem. Eng. J. 2014, 235, 1–9. [Google Scholar]
- Ramires, M.L.V.; de Castro, C.A.N.; Nagasaka, Y.; Nagashima, A.; Assael, M.J.; Wakeham, W.A. Standard Reference Data for the Thermal Conductivity of Water. J. Phys. Chem. Ref. Data 1995, 24, 1377–1381. [Google Scholar] [CrossRef]
- Hussein, O.A.; Habib, K.; Saidur, R.; Muhsan, A.S.; Shahabuddin, S.; Alawi, O.A. The influence of covalent and non-covalent functionalization of GNP based nanofluids on its thermophysical, rheological and suspension stability properties. RSC Adv. 2019, 9, 38576–38589. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Alias, H.; Wen, D.; Williams, R.A. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transf. 2006, 49, 240–250. [Google Scholar]
- Sastry, N.N.V.; Bhunia, A.; Sundararajan, T.; Das, S.K. Predicting the effective thermal conductivity of carbon nanotube based nanofluids. Nanotechnology 2008, 19, 055704. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.; Desgranges, F.; Roy, G.; Galanis, N.; Maré, T.; Boucher, S.; Mintsa, H.A. Temperature and particle-size dependent viscosity data for water-based nanofluids—Hysteresis phenomenon. Int. J. Heat Fluid Flow 2007, 28, 1492–1506. [Google Scholar]
- Ambrose, D.; Lawrenson, I.J. The vapour pressure of water. J. Chem. Thermodyn. 1972, 4, 755–761. [Google Scholar] [CrossRef]
- Shahrul, I.; Mahbubul, I.; Khaleduzzaman, S.; Saidur, R.; Sabri, M. A comparative review on the specific heat of nanofluids for energy perspective. Renew. Sustain. Energy Rev. 2014, 38, 88–98. [Google Scholar] [CrossRef]
- Shin, D.; Banerjee, D. Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic. Int. J. Heat Mass Transf. 2014, 74, 210–214. [Google Scholar]
- Sarsam, W.; Kazi, S.; Badarudin, A. Thermal performance of a flat-plate solar collector using aqueous colloidal dispersions of graphene nanoplatelets with different specific surface areas. Appl. Therm. Eng. 2020, 172, 115142. [Google Scholar]
- Akram, N.; Montazer, E.; Kazi, S.; Soudagar, M.E.M.; Ahmed, W.; Zubir, M.N.M.; Afzal, A.; Muhammad, M.R.; Ali, H.M.; Márquez, F.P.G.; et al. Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids. Energy 2021, 227, 120452. [Google Scholar]
Ratio | CF-CNTs + h-BN | ||
---|---|---|---|
20 + 80% | 30 + 70% | 40 + 60% | |
Zeta potential (mV) | 22.8 | 26.1 | −30.5 |
Particle size (nm) | 2630 | 2377 | 2423 |
Thermal conductivity at 60 °C (W/m-K) | 0.844 | 0.853 | 0.869 |
No. | Factors | Specification | Unit |
---|---|---|---|
1 | Dimensions | 1988 × 1041 × 90 | mm |
2 | Weight | 37.2 | kg |
3 | Gross Area | 2.07 | m2 |
4 | Absorber Area | 1.89 | m2 |
5 | Absorptance (%) | 95 | -- |
6 | Emittance (%) | 3 | -- |
7 | Number of Risers | 10 | -- |
8 | Thickness of Glass | 4 | -- |
9 | Transmittance of Glass | 91% | mm |
10 | Insulation Material | Rockwool | -- |
11 | Max. Operating Pressure | 10 bar | -- |
Device | Operating | Accuracy | Overall Uncertainty |
---|---|---|---|
Flow meter | 0–4 L/min | ±1% | ±0.000128% |
Data logger | 0–1200 °C | ±0.8% | ±9.6 °C |
Fluid flow rate | 0–10 kg/s | ±0.5% | 0.05 kg/s |
Thermometer | 0–150 °C | ±0.15 | ±0.077 °C |
Pyranometer | 0–1900 W/m2 | ±1.5% | ±1.5% |
Thermocouple | 0–1300 °C | ±0.1 | ±0.14% |
Anemometer | 0–20 m/s | ±0.01 m/s | ±0.011% |
Fluid pressure drop | 0–25 kPa | ±0.3% | ±0.075% |
Solar irradiation | 1300 W/m2 | ±5% | 65 W/m2 |
Thermal efficiency | - | ±0.1 | ±1.83% |
Working Base Fluid | FRUL | FR (τα) | R2 |
---|---|---|---|
DW at 21 pm | 6.3265 | 0.6876 | 0.9816 |
DW at 31 pm | 6.6567 | 0.7187 | 0.9930 |
DW at 41 pm | 6.5424 | 0.7405 | 0.9965 |
Hybrid Nanofluid (wt.%) | Flow Rate (L/min) | FRUL | FR (τα) | R2 |
---|---|---|---|---|
0.05 | 2 | 9.9864 | 0.7920 | 0.9921 |
3 | 7.4332 | 0.8133 | 0.9874 | |
4 | 7.8876 | 0.8234 | 0.9936 | |
0.08 | 2 | 7.9330 | 0.8121 | 0.9941 |
3 | 8.1451 | 0.8333 | 0.9974 | |
4 | 8.9672 | 0.8410 | 0.9897 | |
0.1 | 2 | 9.3220 | 0.8212 | 0.9986 |
3 | 10.2155 | 0.8486 | 0.9992 | |
4 | 10.7422 | 0.8677 | 0.9987 |
Hybrid Nanofluid (wt.%) | Flow Rate (L/min) | FRUL (%) | FR (%) |
---|---|---|---|
0.05 | 2 | 53.6 | 7.1 |
3 | 15.3 | 5.7 | |
4 | 22.8 | 6.8 | |
0.08 | 2 | 24.7 | 6.7 |
3 | 24.3 | 5.5 | |
4 | 40.9 | 6.2 | |
0.1 | 2 | 41.5 | 14.8 |
3 | 52.4 | 15.4 | |
4 | 56.3 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.; Meteab, M.M.; Salih, Q.O.; Mohammed, H.A.; Alawi, O.A. Experimental Investigation on the Thermophysical and Rheological Behavior of Aqueous Dual Hybrid Nanofluid in Flat Plate Solar Collectors. Energies 2022, 15, 8541. https://doi.org/10.3390/en15228541
Ahmed M, Meteab MM, Salih QO, Mohammed HA, Alawi OA. Experimental Investigation on the Thermophysical and Rheological Behavior of Aqueous Dual Hybrid Nanofluid in Flat Plate Solar Collectors. Energies. 2022; 15(22):8541. https://doi.org/10.3390/en15228541
Chicago/Turabian StyleAhmed, Mohammed, Mohammed Muhana Meteab, Qusay Oglah Salih, Hussein A. Mohammed, and Omer A. Alawi. 2022. "Experimental Investigation on the Thermophysical and Rheological Behavior of Aqueous Dual Hybrid Nanofluid in Flat Plate Solar Collectors" Energies 15, no. 22: 8541. https://doi.org/10.3390/en15228541
APA StyleAhmed, M., Meteab, M. M., Salih, Q. O., Mohammed, H. A., & Alawi, O. A. (2022). Experimental Investigation on the Thermophysical and Rheological Behavior of Aqueous Dual Hybrid Nanofluid in Flat Plate Solar Collectors. Energies, 15(22), 8541. https://doi.org/10.3390/en15228541