LCC-S-Based Integral Terminal Sliding Mode Controller for a Hybrid Energy Storage System Using a Wireless Power System
Abstract
:1. Introduction
2. System Modeling
2.1. Governing Equations of the LCC-S Compensation Network
2.2. Modeling of the DC–DC Converters
2.2.1. Bi-Directional Buck–Boost Converter (Battery)
2.2.2. Buck Converter (Supercapacitor)
2.2.3. Global Modeling
3. Energy Management System (EMS)
3.1. Power Distribution Strategy
- The SC should be charged to its rated power;
- The WPT system should operate at maximum efficiency;
- The charging time should be fully used to adequately allocate the charging power for the battery.
3.2. Design of System Parameters
4. Designing of Integral Terminal Sliding Mode Controller (ITSMC)
5. Results and Discussion
5.1. Comparison with PID and SMC Techniques
5.2. Controller Hardware in Loop Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HF | High frequency |
EVs | Electric vehicles |
WPT | Wireless power transfer |
AGVs | Automatic guided vehicles |
LRV | Light rail vehicles |
PID | Proportional–integral–derivative |
ESUs | Energy storage units |
SC | Supercapacitor |
EMS | Energy management system |
C-HIL | Controller hardware-in-the-loop |
SMC | Sliding mode controller |
HESS | Hybrid energy storage system |
SOC | State of charge |
LCC | inductor-capacitor-capacitor |
ITSMC | Integral terminal sliding mode controller |
Battery max current | |
Battery capacity | |
SC max voltage | |
SC initial voltage | |
Battery voltage and current | |
SC voltage and current | |
SC max current | |
SC capacitance | |
SC minimum voltage | |
Total charging time | |
bi-directional buck-boost Inductor | |
Buck converter Inductor | |
Battery resistance | |
SC resistance | |
ESR of | |
ESR of | |
SC reference charging current | |
Battery reference charging current | |
DC-DC Converter switching frequency | |
IGBT switches of buck and bi-directional buck-boost | |
PWM signals of switches and | |
ITSMC Controller gains | |
ITSMC Controller gains | |
PID Controller gains | |
, | SMC Controller gain |
Input voltage | |
Transmitting coil inductance | |
Transmitting coil resistance | |
Receiving coil inductance | |
Receiving coil resistance | |
M | Mutual inductance |
WPT operating frequency | |
WPT Output power | |
Transmitting side compation inductance | |
Transmitting side parallel compensation capacitance | |
Transmitting side series compensation capacitance | |
Transmitting side compensation inductor resistance | |
Receiving side series compensation capacitance | |
WPT system efficiency | |
WPT maximum power | |
Battery charging power | |
SC charging power | |
Turning Power |
References
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless Charging Technologies: Fundamentals, Standards, and Network Applications. IEEE Commun. Surv. Tutor. 2016, 18, 1413–1452. [Google Scholar] [CrossRef] [Green Version]
- Wireless Power Transfer for Smart Industrial and Home Applications. IEEE Trans. Ind. Electron. 2019, 66, 3959–3962. [CrossRef] [Green Version]
- Lu, X.; Niyato, D.; Wang, P.; Kim, D.I.; Han, Z. Wireless charger networking for mobile devices: Fundamentals, standards, and applications. IEEE Wirel. Commun. 2015, 22, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Chen, Y.; Madawala, U.K.; Thrimawithana, D.J.; Ma, H. A new controller for bidirectional wireless power transfer systems. IEEE Trans. Power Electron. 2017, 33, 9076–9087. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, H.; Mi, C. A two-plate capacitive wireless power transfer system for electric vehicle charging applications. IEEE Trans. Power Electron. 2017, 33, 964–969. [Google Scholar] [CrossRef]
- Gong, C.; Liu, D.; Miao, Z.; Wang, W.; Li, M. An NFC on two-coil WPT link for implantable biomedical sensors under ultra-weak coupling. Sensors 2017, 17, 1358. [Google Scholar] [CrossRef] [PubMed]
- RamRakhyani, A.K.; Mirabbasi, S.; Chiao, M. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 2010, 5, 48–63. [Google Scholar] [CrossRef]
- Hu, J.; Lu, F.; Zhu, C.; Cheng, C.; Chen, S.; Ren, T.; Mi, C.C. Hybrid Energy Storage System of an Electric Scooter Based on Wireless Power Transfer. IEEE Trans. Ind. Inform. 2018, 14, 4169–4178. [Google Scholar] [CrossRef]
- Yi, W.; Yuyu, G.; Zhongping, Y.; Fei, L. Parameter Optimization of Modern Tram Wireless Power Transfer Power Supply System. In Proceedings of the 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), London, UK, 17–21 June 2019; pp. 49–52. [Google Scholar]
- Kongezos, V.K.; Allen, C.R. Wireless communication between AGVs (autonomous guided vehicles) and the industrial network CAN (controller area network). In Proceedings of the 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), Washington, DC, USA, 11–15 May 2002; Volume 1, pp. 434–437. [Google Scholar]
- Hao, Y.; Wang, J.; Liu, Y. Research on wireless power transfer system of automated guided vehicle based on magnetic coupling resonance. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–4. [Google Scholar]
- Chen, W.; Liu, J.; Chen, S.; Zhang, L. Energy Shaping Control for Wireless Power Transfer System in Automatic Guided Vehicles. Energies 2020, 13, 2959. [Google Scholar] [CrossRef]
- Geng, Y.; Yang, Z.; Lin, F.; Wang, Y. Maximum power and efficiency transmission using parallel energy storage load for wireless power transfer systems. In Proceedings of the 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, China, 20–22 May 2017; pp. 40–47. [Google Scholar]
- Li, S.; Mi, C.C. Wireless power transfer for electric vehicle applications. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 3, 4–17. [Google Scholar]
- Qiu, C.; KT, C.; Ching, T.W.; Liu, C. Overview of wireless charging technologies for electric vehicles. J. Asian Electr. Veh. 2014, 12, 1679–1685. [Google Scholar] [CrossRef] [Green Version]
- Hata, K.; Huang, X.; Hori, Y. Notice of Removal: Power flow control of magnetic resonance wireless charing for hybrid energy storage system of electric vehicles application. In Proceedings of the 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Hangzhou, China, 28–30 July 2015; pp. 1459–1462. [Google Scholar]
- Wang, L.; Gonder, J.; Burton, E.; Brooker, A.; Meintz, A.; Konan, A. A Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses. In Proceedings of the 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), Montreal, QC, Canada, 19–22 October 2015; pp. 1–7. [Google Scholar]
- Wang, C.S.; Stielau, O.H.; Covic, G.A. Design considerations for a contactless electric vehicle battery charger. IEEE Trans. Ind. Electron. 2005, 52, 1308–1314. [Google Scholar] [CrossRef]
- Kalwar, K.A.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B. Coil design for high misalignment tolerant inductive power transfer system for EV charging. Energies 2016, 9, 937. [Google Scholar] [CrossRef] [Green Version]
- Cirimele, V.; Freschi, F.; Guglielmi, P. Wireless power transfer structure design for electric vehicle in charge while driving. In Proceedings of the 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany, 2–5 September 2014; pp. 2461–2467. [Google Scholar]
- Spanik, P.; Frivaldsky, M.; Drgona, P.; Jaros, V. Analysis of proper configuration of wireless power transfer system for electric vehicle charging. In Proceedings of the 2016 ELEKTRO, Strbske Pleso, Slovakia, 16–18 May 2016; pp. 231–237. [Google Scholar]
- Geng, Y.; Li, B.; Yang, Z.; Lin, F.; Sun, H. A high efficiency charging strategy for a supercapacitor using a wireless power transfer system based on inductor/capacitor/capacitor (LCC) compensation topology. Energies 2017, 10, 135. [Google Scholar] [CrossRef]
- Ali, N.; Liu, Z.; Hou, Y.; Armghan, H.; Wei, X.; Armghan, A. LCC-S Based Discrete Fast Terminal Sliding Mode Controller for Efficient Charging through Wireless Power Transfer. Energies 2020, 13, 1370. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhu, C.; Jiang, J.; Song, K.; Wei, G. A 3-kW wireless power transfer system for sightseeing car supercapacitor charge. IEEE Trans. Power Electron. 2016, 32, 3301–3316. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Wang, K.; Chen, W.; Yang, X. A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling. IEEE Trans. Power Electron. 2014, 30, 3998–4008. [Google Scholar] [CrossRef]
- Zhong, W.; Hui, S. Maximum energy efficiency tracking for wireless power transfer systems. IEEE Trans. Power Electron. 2014, 30, 4025–4034. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Zhang, L.; Liu, Z.; Chen, Q.; Long, R.; Su, H. Model Predictive Control for the Receiving-Side DC–DC Converter of Dynamic Wireless Power Transfer. IEEE Trans. Power Electron. 2020, 35, 8985–8997. [Google Scholar] [CrossRef]
- Besselmann, T.; Lofberg, J.; Morari, M. Explicit MPC for LPV Systems: Stability and Optimality. IEEE Trans. Autom. Control 2012, 57, 2322–2332. [Google Scholar] [CrossRef] [Green Version]
- Zanon, M.; Gros, S.; Bemporad, A. Practical Reinforcement Learning of Stabilizing Economic MPC. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; pp. 2258–2263. [Google Scholar]
- Yang, Y.; Zhong, W.; Kiratipongvoot, S.; Tan, S.C.; Hui, S.Y.R. Dynamic improvement of series–series compensated wireless power transfer systems using discrete sliding mode control. IEEE Trans. Power Electron. 2017, 33, 6351–6360. [Google Scholar] [CrossRef]
- Huangfu, Y.; Zhuo, S.; Rathore, A.K.; Breaz, E.; Nahid-Mobarakeh, B.; Gao, F. Super-twisting differentiator-based high order sliding mode voltage control design for DC-DC buck converters. Energies 2016, 9, 494. [Google Scholar] [CrossRef] [Green Version]
- Alexander, C.K.; Sadiku, M.N. Fundamentals of Electric Circuits; McGraw-Hill Education: New York, NY, USA, 2000. [Google Scholar]
- Sedra, A.S.; Sedra, D.E.A.S.; Smith, K.C.; Smith, K.C. Microelectronic Circuits; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Qiu, G.; Luo, X. Circuit; China Higher Education Press: Beijing, China, 2006; pp. 429–432. [Google Scholar]
- El Fadil, H.; Giri, F.; Guerrero, J.M.; Tahri, A. Modeling and nonlinear control of a fuel cell/supercapacitor hybrid energy storage system for electric vehicles. IEEE Trans. Veh. Technol. 2014, 63, 3011–3018. [Google Scholar] [CrossRef] [Green Version]
Symbol | Parameter | Value |
---|---|---|
Input voltage | 75 V | |
Transmitting coil inductance | H | |
Transmitting coil resistance | ∼190 m | |
Receiving coil inductance | H | |
Receiving coil resistance | ∼270 m | |
M | Mutual inductance | H |
Switching frequency | 58 kHz | |
Output power | 310 W | |
Transmitting side compensation inductance | H | |
Transmitting side parallel compensation capacitance | F | |
Transmitting side series compensation capacitance | nF | |
Transmitting side compensation inductor resistance | 100 m | |
Receiving side series compensation capacitance | nF |
Symbol | Parameter | Value |
---|---|---|
Battery voltage | 55 V | |
Battery max current | A | |
Battery capacity | Ah | |
SC max voltage | 50 V | |
SC max current | 10 A | |
SC capacitance | 10 F | |
SC minimum voltage | 5 V | |
Total charging time | 45 s |
Symbol | Parameter | Value |
---|---|---|
Inductor | mH | |
ESR of inductor and | 20 m | |
Converter switching frequency | 100 kHz | |
ITSMC controller gains | , | |
ITSMC Controller gains | , , , | |
PID controller gains | , , | |
, | SMC gain | , |
5 V | 12 V | 22 V | 35 V | |
500 W | 296 W | 224 W | 175 W |
Rise Time (ms) | Settling Time (ms) | Percentage Overshoot (%) | Steady-State Error (%) | |
---|---|---|---|---|
PID | 1.565 | 15.1 | 8.1 | 0.21 |
SMC | 1.283 | 5.4 | 11.12 | 0.2 |
ITSMC | 1.064 | 3.5 | Nil | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, N.; Liu, Z.; Armghan, H.; Ahmad, I.; Hou, Y. LCC-S-Based Integral Terminal Sliding Mode Controller for a Hybrid Energy Storage System Using a Wireless Power System. Energies 2021, 14, 1693. https://doi.org/10.3390/en14061693
Ali N, Liu Z, Armghan H, Ahmad I, Hou Y. LCC-S-Based Integral Terminal Sliding Mode Controller for a Hybrid Energy Storage System Using a Wireless Power System. Energies. 2021; 14(6):1693. https://doi.org/10.3390/en14061693
Chicago/Turabian StyleAli, Naghmash, Zhizhen Liu, Hammad Armghan, Iftikhar Ahmad, and Yanjin Hou. 2021. "LCC-S-Based Integral Terminal Sliding Mode Controller for a Hybrid Energy Storage System Using a Wireless Power System" Energies 14, no. 6: 1693. https://doi.org/10.3390/en14061693
APA StyleAli, N., Liu, Z., Armghan, H., Ahmad, I., & Hou, Y. (2021). LCC-S-Based Integral Terminal Sliding Mode Controller for a Hybrid Energy Storage System Using a Wireless Power System. Energies, 14(6), 1693. https://doi.org/10.3390/en14061693