Hydrogen Dispersion and Ventilation Effects in Enclosures under Different Release Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Hydrogen Dispersion Experiment
2.2. CFD Modeling of the Hydrogen Dispersion
3. Results
3.1. Hydrogen Dispersion Analyses
3.2. The Hazard Mitigation by a Ventilation System
4. Discussion
Test No. | Hydrogen Release Method | U [m/s] | D [m] | Fr |
---|---|---|---|---|
Test 1 | Single nozzle release | 129.78 | 4.00 × 10−3 | 4.29 × 105 |
Test 2 | Multi-point release | 2.75 | 2.75 × 10−2 | 2.80 × 101 |
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kaplan, R.; Kopacz, M. Economic Conditions for Developing Hydrogen Production Based on Coal Gasification with Carbon Capture and Storage in Poland. Energies 2020, 13, 5074. [Google Scholar] [CrossRef]
- Lanz, A.; Heffel, J.; Messer, C. Hydrogen Fuel Cell Engines and Related Technologies—Module 3: Hydrogen Use in Internal Combustion Engines; College of the Desert: Palm Desert, CA, USA, 2001. [Google Scholar]
- Arunkumar, J. An Assessment on Polymer Electrolyte Membrane Fuel Cell Stack Components, Applied Physical Chemistry with Multidisciplinary Approache; Apple Academic Press Inc.: Mistwell Crescent, ON, Canada, 2018. [Google Scholar]
- Pethaiah, S.S.; Sadasivuni, K.K.; Jayakumar, A.; Ponnamma, D.; Tiwary, C.S.; Sasikumar, G. Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review. Energies 2020, 13, 5879. [Google Scholar] [CrossRef]
- Molnarne, M.; Schroeder, V. Hazardous properties of hydrogen and hydrogen containing fuel gases. Process. Saf. Environ. Prot. 2019, 130, 1–5. [Google Scholar] [CrossRef]
- Molkov, V. Fundamentals of Hydrogen Safety Engineering I; Vladimir Molkov & bookboon.com: London, UK, 2012; Volume 1. [Google Scholar]
- Tao, Y.; Qiu, J.; Lai, S.; Zhang, X.; Wang, G.; Ev, P. Collaborative Planning for Electricity Distribution Network and Transportation System Considering Hydrogen Fuel Cell Vehicles. IEEE Trans. Transp. Electrif. 2020, 6, 1211–1225. [Google Scholar] [CrossRef]
- European Commission. Directive 2014/94/EU—Deployment of Alternative Fuels Infrastructure; European Commission: Brussels, Belgium, 2014; Volume L307, p. 20. [Google Scholar]
- Lanz, A.; Heffel, J.; Messer, C. Hydrogen Fuel Cell Engines and Related Technologies—Module 1: Hydrogen Properties; College of the Desert: Palm Desert, CA, USA, 2001. [Google Scholar]
- International Organization for Standardization. ISO/TR 15916:2015 Basic Considerations for the Safety of Hydrogen Systems; PD ISO/TR 15916:2015; International Organization for Standardization: London, UK, 2015. [Google Scholar]
- Alcock, J.; Shirvill, L.; Cracknell, R. Compilation of Existing Safety Data on Hydrogen and Comparative Fuels. Eur. Integr. Hydrog. Proj. EIHP2 2001. Available online: http://www.eihp.org/public/documents/CompilationExistingSafetyData_on_H2_and_ComparativeFuels_S.pdf (accessed on 9 May 2021).
- Klassen, M. Modern Vehicle Hazards in Parking Structures and Vehicle Carriers. 2020. Available online: https://www.nfpa.org/News-and-Research/Data-research-and-tools/Building-and-Life-Safety/Modern-Vehicle-Hazards-in-Parking-Garages-Vehicle-Carriers (accessed on 9 May 2021).
- Brzezińska, D. Ventilation system influence on hydrogen explosion hazards in industrial lead-acid battery rooms. Energies 2018, 11, 2086. [Google Scholar] [CrossRef]
- Venetsanos, A.G.; Papanikolaou, E.; Delichatsios, M.; Garcia, J.; Hansen, O.R.; Heitsch, M.; Huser, A.; Jahn, W.; Jordan, T.; Lacome, J.-M.; et al. An inter-comparison exercise on the capabilities of CFD models to predict the short and long term distribution and mixing of hydrogen in a garage. Int. J. Hydrogen Energy 2009, 34, 5912–5923. [Google Scholar] [CrossRef]
- Bédard-Tremblay, L.; Fang, L.; Bauwens, L.; Cheng, Z.; Tchouvelev, A.V. Numerical simulation of hydrogen-air detonation for damage assessment in realistic accident scenarios. J. Loss Prev. Process Ind. 2008, 21, 154–161. [Google Scholar] [CrossRef]
- Jäkel, C.; Kelm, S.; Reinecke, E.A.; Verfondern, K.; Allelein, H.J. Validationstrategyfor CFD models describing safety-relevant scenarios including LH2/GH2 release and the use of passive auto-catalytic recombiners. Int. J. Hydrogen Energy 2014, 39, 20371–20377. [Google Scholar] [CrossRef]
- Melideo, D.; Baraldi, D. CFD analysis of fast filling strategies for hydrogen tanks and their effects on key-parameters. Int. J. Hydrogen Energy 2015, 40, 735–745. [Google Scholar] [CrossRef]
- Hoyes, J.R.; Ivings, M.J. CFD modelling of hydrogen stratification in enclosures: Model validation and application to PAR performance. Nucl. Eng. Des. 2016, 310, 142–153. [Google Scholar] [CrossRef]
- Giannissi, S.G.; Venetsanos, A.G. A comparative CFD assessment study of cryogenic hydrogen and LNG dispersion. Int. J. Hydrogen Energy 2019, 44, 9018–9030. [Google Scholar] [CrossRef]
- Tolias, I.C.; Giannissi, S.G.; Venetsanos, A.G.; Keenan, J.; Shentsov, V.; Makarov, D.; Coldrick, S.; Kotchourko, A.; Ren, K.; Jedicke, O.; et al. Best practice guidelines in numerical simulations and CFD benchmarking for hydrogen safety applications. Int. J. Hydrogen Energy 2019, 44, 9050–9062. [Google Scholar] [CrossRef]
- Terziev, A.; Antonov, I.; Velichkova, R. Appropriate CFD Turbulence Model for Improving Indoor Air Quality of Ventilated Spaces. Math. Modell. Civil Eng. 2014, 10, 1–8. [Google Scholar]
- Brennan, S.; Molkov, V. Safety assessment of unignited hydrogen discharge from onboard storage in garages with low levels of natural ventilation. Int. J. Hydrogen Energy 2013, 38, 8159–8166. [Google Scholar] [CrossRef]
- Lach, A.W.; Gaathaug, A.V.; Vaagsaether, K. Pressure peaking phenomena: Unignited hydrogen releases in confined spaces – Large-scale experiments. Int. J. Hydrogen Energy 2020, 45, 32702–32712. [Google Scholar] [CrossRef]
- Weiner, S.C. Advancing the hydrogen safety knowledge base. Int. J. Hydrogen Energy 2014, 39, 20357–20361. [Google Scholar] [CrossRef]
- Molkov, V.; Dobashi, R.; Suzuki, M.; Hirano, T. Venting of deflagrations: Hydrocarbon-air and hydrogen-air systems. J. Loss Prev. Process Ind. 2000, 13, 397–409. [Google Scholar] [CrossRef]
- Moradi, R.; Groth, K.M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Brzezinska, D.; Markowski, A.S. Experimental investigation and CFD modelling of the internal car park environment in case of accidental LPG release. Process Saf. Environ. Prot. 2017, 110, 5–14. [Google Scholar] [CrossRef]
- Brzezińska, D.; Dziubiński, M.; Markowski, A.S. Analyses of LPG Dispersion during Its Accidental Release in Enclosed Car Parks. Ecol. Chem. Eng. S 2017, 24, 249–261. [Google Scholar] [CrossRef][Green Version]
- Brzezińska, D. LPG cars in a car park environment—How to make it safe. Int. J. Environ. Res. Public Health 2019, 16, 1062. [Google Scholar] [CrossRef] [PubMed]
- Brzezinska, D.; Markowski, A.S. Experimental evaluation of LPG release and dispersion in the enclosed car parks. Chem. Eng. Trans. 2016, 48, 253–258. [Google Scholar]
- He, J.; Kokgil, E.; Wang, L.; Ng, H.D. Assessment of similarity relations using helium for prediction of hydrogen dispersion and safety in an enclosure. Int. J. Hydrogen Energy 2016, 41, 15388–15398. [Google Scholar] [CrossRef]
- Molkov, V. Fundamentals of Hydrogen Safety Engineering II; Vladimir Molkov & bookboon.com: London, UK, 2012. [Google Scholar]
- Li, Y.; Xiao, J.; Zhang, H.; Breitung, W.; Travis, J.; Kuznetsov, M.; Jordan, T. Numerical analysis of hydrogen release, dispersion and combustion in a tunnel with fuel cell vehicles using all-speed CFD code GASFLOW-MPI. Int. J. Hydrogen Energy 2021, 46, 12474–12486. [Google Scholar] [CrossRef]
- Gong, L.; Duan, Q.; Sun, J.; Molkov, V. Similitude analysis and critical conditions for spontaneous ignition of hydrogen release into the atmosphere through a tube. Fuel 2019, 245, 413–419. [Google Scholar] [CrossRef]
- McGrattan, K.; Hostikka, S.; McDermott, R.; Floyd, J.; Weinschenk, C.; Overholt, K. Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model (Sixth Edition). NIST Spec. Publ. 2015, 1, 1018. [Google Scholar]
- McGrattan, K.; Hostikka, S.; McDermott, R.; Floyd, J.; Vanella, M. Fire Dynamics Simulator User’s Guide. NIST Spec. Publ. 2019, 1019, 347. [Google Scholar]
- NIST. Hydrogen Density at different temperatures and pressures. In NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 8.0; Gaithersburg, MD, USA, 2020; Available online: https://h2tools.org/hyarc/hydrogen-data/hydrogen-density-different-temperatures-and-pressures (accessed on 4 June 2021).
- FCH2Edu—European Educational Platform for Fuel Cells and Hydrogen. Available online: https://fch2edu.eu/ (accessed on 4 June 2021).
- Krishnapisharody, K.; Irons, G.A. A critical review of the modified Froude number in Ladle Metallurgy. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2013, 44, 1486–1498. [Google Scholar] [CrossRef]
- Brzezinska, D.; Sompolinski, M. The accuracy of mapping the airstream of jet fan ventilators by fire dynamics simulator. Sci. Technol. Built Environ. 2017, 23, 736–747. [Google Scholar] [CrossRef]
Test No. | Hydrogen Release Method | Hydrogen Release Outflow [m3/s] | Hydrogen Density [kg/m3] | Hydrogen Mass Flow Rate [kg/s] | Hydrogen Release Source [m2] | Hydrogen Release Velocity [m/s] |
---|---|---|---|---|---|---|
Test 1 | Single nozzle release | 1.63 × 10−3 | 0.82 | 133 × 10−4 | 1.256 × 10−5 | 129.78 |
Test 2 | Multi-point release | 1.63 × 10−3 | 0.82 | 1.33 × 10−4 | 5.935 × 10−4 | 2.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzezińska, D. Hydrogen Dispersion and Ventilation Effects in Enclosures under Different Release Conditions. Energies 2021, 14, 4029. https://doi.org/10.3390/en14134029
Brzezińska D. Hydrogen Dispersion and Ventilation Effects in Enclosures under Different Release Conditions. Energies. 2021; 14(13):4029. https://doi.org/10.3390/en14134029
Chicago/Turabian StyleBrzezińska, Dorota. 2021. "Hydrogen Dispersion and Ventilation Effects in Enclosures under Different Release Conditions" Energies 14, no. 13: 4029. https://doi.org/10.3390/en14134029
APA StyleBrzezińska, D. (2021). Hydrogen Dispersion and Ventilation Effects in Enclosures under Different Release Conditions. Energies, 14(13), 4029. https://doi.org/10.3390/en14134029