Analysis of Energy Exchange with the Ground in a Two-Chamber Vegetable Cold Store, Assuming Different Lengths of Technological Break, with the Use of a Numerical Calculation Method—A Case Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Experimental Studies
3.2. Calculation Model Validation
3.3. Calculation Variant Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Z.; Sun, D. Effect of cooling methods on the cooling efficiencies and qualities of cooked broccoli and carrot slices. J. Food Eng. 2006, 77, 320–326. [Google Scholar] [CrossRef]
- Sun, D.-W.; Wang, L. Experimental investigation of performance of vacuum cooling for commercial large cooked meat joints. J. Food Eng. 2004, 61, 527–532. [Google Scholar] [CrossRef]
- Phillips, K.M.; Council-Troche, M.C.A.; McGinty, R.C.; Rasor, A.S.; Tarrago-Trani, M.T. Stability of vitamin C in fruit and vegetable homogenates stored at different temperatures. J. Food Compos. Anal. 2016, 45, 147–162. [Google Scholar] [CrossRef]
- Mazzeo, T.; Paciulli, M.; Chiavaro, E.; Visconti, A.; Pellegrini, N. Impact of the industrial freezing process on selected vegetables—Part II. Colour and bioactive compounds. Food Res. Int. 2015, 75, 89–97. [Google Scholar] [CrossRef]
- Wu, Z.S.; Zhang, M.; Wang, S. Effects of high pressure argon treatments on the quality of fresh-cut apples at cold storage. Food Control 2012, 23, 120–127. [Google Scholar] [CrossRef]
- Ambaw, A.; Delele, M.A.; Defraeye, T.; Ho, Q.T.; Opara, L.U.; Nicolai, B.M.; Verboven, P. The use of CFD to characterize and design post-harvest storage facilities: Past, present and future. Comput. Electron. Agric. 2013, 93, 184–194. [Google Scholar] [CrossRef]
- East, A.R.; Smale, N.J.; Trujillo, F.J. Potential for energy cost savings by utilizing alternative temperature control strategies for controlled atmosphere stored apples. Int. J. Refrig. 2013, 36, 1109–1117. [Google Scholar] [CrossRef]
- Liu, Y.; Langer, V.; Hogh-Jensen, H.; Egelyng, H. Life Cycle Assessment of fossil energy use and greenhouse gas emissions inChinese pear production. J. Clean. Prod. 2010, 18, 1423–1430. [Google Scholar] [CrossRef]
- Allais, I.; Alvarez, G. Analysis of heat transfer Turing mist Schilling of a packed Bed of spheres simulating foodstuffs. J. Food Eng. 2001, 49, 37–47. [Google Scholar] [CrossRef]
- Alvares, G.; Flick, D. Modelling turbulent flow and heat transfer using macroporous medium approach used to predict cooling kinetics of stacks of food products. J. Food Eng. 2007, 80, 391–401. [Google Scholar] [CrossRef]
- Verboven PHoang, M.I.; Baelmans, M.; Nicolai, B.M. Airflow through beds of apples and chicory roots. Biosyst. Eng. 2004, 88, 17–125. [Google Scholar] [CrossRef]
- Baerdemaeker, D.J.; Delele, M.A.; Verboven, P.; Bart, M. Multiscale modeling of postharvest storage of fruit and vegetables in a plant factory context. IFAC Proc. Vol. 2011, 44, 616–620. [Google Scholar] [CrossRef]
- Delele, M.A.; Verboven, P.; Ho, Q.T.; Nicolai, B.M. Advances in mathematical modeling of postharvest refrigeration processes. Stewart Postharvest Rev. 2010, 2, 1–8. [Google Scholar]
- Nawalany, G.; Sokołowski, P. Analysis of hygrothermal conditions of external partitions in an underground fruit store. J. Ecol. Eng. 2016, 17, 75–82. [Google Scholar] [CrossRef]
- Nawalany, G.; Sokołowski, P.; Herbut, P.; Angrecka, S. Development of selected parameters of microclimate in a stand alone cellar plunged into soil. J. Ecol. Eng. 2017, 18, 156–161. [Google Scholar] [CrossRef]
- Radoń, J.; Bieda, W.; Lendelova, J.; Pogran, S. Computational model of heat exchange between dairy cow and bedding. Comput. Electron. Agric. 2014, 107, 29–37. [Google Scholar]
- Nawalany, G.; Bieda, W.; Radoń, J.; Herbut, P. Experimental study on development of thermal conditions in ground beneath a greenhouses. Energy Energy 2014, 69, 103–111. [Google Scholar] [CrossRef]
- Nawalany, G.; Radoń, J.; Bieda, W.; Sokołowski, P. Influence of selected factors on heat exchange with the ground in a greenhouse. Trans. ASABE 2017, 60, 479–487. [Google Scholar]
- Martin, S.; Canas, I. A comparison between underground wine Cellary and aboveground storage for the aging of Spanish wines. Trans. ASABE 2006, 49, 1471–1478. [Google Scholar] [CrossRef]
- Erol, S.; Francois, B. Multilayer analitical model for vertical ground heat exchanger with groundwater flow. Geothermics 2018, 71, 294–305. [Google Scholar] [CrossRef]
- Zhao, B. Study on heat transfer of ground heat exchanger based on wedgelet finite element method. Int. Commun. Heat Mass Transf. 2016, 74, 63–68. [Google Scholar] [CrossRef]
- Kupiec, K.; Larwa, B.; Gwadera, M. Heat transfer in horizontal ground heat exchangers. Appl. Therm. Eng. 2015, 75, 270–276. [Google Scholar] [CrossRef]
- Akkurt, G.G.; Aste, N.; Borderon, J.; Buda, A.; Calzolari, M.; Chung, D.; Costanzo, V.; Del Pero, C.; Evola, G.; Huerto-Cardenas, H.E.; et al. Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions. Renew. Sustain. Energy Rev. 2020, 118, 109509. [Google Scholar] [CrossRef]
- Dahlem, K.-H. Ein neues Berechnungsverfahren für den Wärmeverlusterdreichberührter Bauteilezum Grundwasser. Teil 1; Gesundheits Ingenieur, Haustechnik-Bauphysik-Umwelttechnik: Munchen, Germany, 2001; Volume 4, pp. 173–178. [Google Scholar]
- Dahlem, K.-H. Ein neues Berechnungsverfahren für den Wärmeverlusterdreichberührter Bauteilezum Grundwasser. Teil 2; Gesundheits Ingenieur, Haustechnik-Bauphysik-Umwelttechnik: Munchen, Germany, 2001; Volume 5, pp. 234–238. [Google Scholar]
- Czapp, M.; Charun, H. Principles of Developing a Heat Balance of Cooling Rooms; University Publishing House of Koszalin University of Technology: Koszalin, Poland, 1995; pp. 343–349. [Google Scholar]
- Jedynak, T. Mechanizacja Prac w Magazynach Owoców i Warzyw; CRS: Warsaw, Poland, 1970. [Google Scholar]
- Rossi, P.; Gastaldo, A.; Riva, G.; De Carolis, C. Progetto Re Sole; Centro Ricerche Produzioni Animali (CRPA): Reggio Emilia, Italy, 2013. [Google Scholar]
- Nawalany, G.; Sokołowski, P. Improved Energy Management in an IntermittentlyHeated Building Using a Large Broiler House inCentral Europe as an Example. Energies 2020, 13, 1371. [Google Scholar] [CrossRef]
- Bambara, J.; Athienitis, A.K. Energy and Economic Analysis for greenhouse Ground Insulation Design. Energies 2018, 11, 3218. [Google Scholar] [CrossRef]
- Dong, C. Heat Loss via Concrete Slab Floors in Australian Houses. Procedia Eng. 2017, 205, 108–115. [Google Scholar]
- Nawalany, G.; Sokołowski, P.; Michalik, M. Experimental Study of Thermal and Humidity Conditions in a Historic Wooden Building in Southern Poland. Buildings 2020, 10, 118. [Google Scholar] [CrossRef]
- Hyung-Kweon, K.; Geum-Choon, K.; Jong-Pil, M.; Tae-Seok, L.; Sung-Sik, O. Estimation of Thermal Performance and Heat Loss in Plastic Greenhouses with and without Thermal Curtains. Energies 2018, 11, 578. [Google Scholar] [CrossRef]
- Jakubowski, T.; Krolczyk Jolanta, B. Method for the reduction of natural losses of potato tubers during their long-therm storage. Sustainbility 2020, 12, 1048. [Google Scholar] [CrossRef]
Specification | Unit | Value | |
---|---|---|---|
clay | bulk density | kg·m−3 | 1600 |
heat capacity | J·kg−1·K−1 | 1000 | |
thermal conductivity | W·m−1·K−1 | 1.80 | |
fertile soil | bulk density | kg·m−3 | 1800 |
heat capacity | J·kg−1·K−1 | 1260 | |
thermal conductivity | W·m−1·K−1 | 0.90 | |
styrofoam | bulk density | kg·m−3 | 20 |
heat capacity | J·kg−1·K−1 | 1500 | |
thermal conductivity | W·m−1·K−1 | 0.04 | |
concrete | bulk density | kg·m−3 | 2300 |
heat capacity | J·kg−1·K−1 | 1000 | |
thermal conductivity | W·m−1·K−1 | 2.30 | |
sand/gravel | bulk density | kg·m−3 | 1800 |
heat capacity | J·kg−1·K−1 | 840 | |
thermal conductivity | W·m−1·K−1 | 0.90 | |
steel | bulk density | kg·m−3 | 7900 |
heat capacity | J·kg−1·K−1 | 460 | |
thermal conductivity | W·m−1·K−1 | 17.00 |
Variant | Θi | C1 | C2 | C3 | C4 | B1 | B2 | B3 | B4 | A1 | A2 | A3 | A4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3.29 | 3.41 | 5.82 | 6.06 | 6.26 | 3.40 | 5.69 | 5.94 | 6.13 | 3.39 | 5.36 | 5.60 | 5.79 |
2 | 3.46 | 3.58 | 5.90 | 6.15 | 6.34 | 3.57 | 5.77 | 6.02 | 6.22 | 3.55 | 5.46 | 5.69 | 5.89 |
3 | 3.52 | 3.75 | 5.98 | 6.23 | 6.43 | 3.74 | 5.85 | 6.11 | 6.31 | 3.72 | 5.56 | 5.78 | 5.99 |
4 | 3.38 | 3.91 | 6.06 | 6.32 | 6.52 | 3.91 | 5.94 | 6.19 | 6.40 | 3.88 | 5.65 | 5.88 | 6.08 |
5 | 3.80 | 4.08 | 6.14 | 6.40 | 6.61 | 4.08 | 6.02 | 6.28 | 6.49 | 4.05 | 5.75 | 5.97 | 6.18 |
6 | 3.95 | 4.25 | 6.22 | 6.49 | 6.70 | 4.25 | 6.10 | 6.37 | 6.58 | 4.21 | 5.85 | 6.06 | 6.28 |
7 | 4.11 | 4.42 | 6.30 | 6.57 | 6.78 | 4.42 | 6.19 | 6.45 | 6.67 | 4.38 | 5.94 | 6.16 | 6.38 |
8 | 4.27 | 4.59 | 6.38 | 6.66 | 6.87 | 4.59 | 6.27 | 6.54 | 6.76 | 4.54 | 6.04 | 6.25 | 6.47 |
9 | 4.42 | 4.75 | 6.46 | 6.74 | 6.96 | 4.76 | 6.35 | 6.62 | 6.85 | 4.70 | 6.14 | 6.34 | 6.57 |
10 | 4.72 | 4.92 | 6.54 | 6.83 | 7.05 | 4.93 | 6.44 | 6.71 | 6.94 | 4.87 | 6.23 | 6.44 | 6.67 |
11 | 4.95 | 5.09 | 6.62 | 6.91 | 7.14 | 5.10 | 6.52 | 6.80 | 7.03 | 5.03 | 6.33 | 6.53 | 6.76 |
12 | 5.11 | 5.26 | 6.69 | 7.00 | 7.22 | 5.27 | 6.60 | 6.88 | 7.11 | 5.20 | 6.43 | 6.62 | 6.86 |
13 | 5.35 | 5.42 | 6.77 | 7.08 | 7.31 | 5.44 | 6.69 | 6.97 | 7.20 | 5.36 | 6.52 | 6.72 | 6.96 |
14 | 5.59 | 5.70 | 6.92 | 7.18 | 7.41 | 5.68 | 6.82 | 7.09 | 7.33 | 5.65 | 6.63 | 6.89 | 7.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokołowski, P.; Nawalany, G. Analysis of Energy Exchange with the Ground in a Two-Chamber Vegetable Cold Store, Assuming Different Lengths of Technological Break, with the Use of a Numerical Calculation Method—A Case Study. Energies 2020, 13, 4970. https://doi.org/10.3390/en13184970
Sokołowski P, Nawalany G. Analysis of Energy Exchange with the Ground in a Two-Chamber Vegetable Cold Store, Assuming Different Lengths of Technological Break, with the Use of a Numerical Calculation Method—A Case Study. Energies. 2020; 13(18):4970. https://doi.org/10.3390/en13184970
Chicago/Turabian StyleSokołowski, Paweł, and Grzegorz Nawalany. 2020. "Analysis of Energy Exchange with the Ground in a Two-Chamber Vegetable Cold Store, Assuming Different Lengths of Technological Break, with the Use of a Numerical Calculation Method—A Case Study" Energies 13, no. 18: 4970. https://doi.org/10.3390/en13184970
APA StyleSokołowski, P., & Nawalany, G. (2020). Analysis of Energy Exchange with the Ground in a Two-Chamber Vegetable Cold Store, Assuming Different Lengths of Technological Break, with the Use of a Numerical Calculation Method—A Case Study. Energies, 13(18), 4970. https://doi.org/10.3390/en13184970