Sustainable Development and Industry 4.0: A Bibliometric Analysis Identifying Key Scientific Problems of the Sustainable Industry 4.0
Abstract
:1. Introduction
1.1. Industry 4.0—Background
1.2. Sustainable Industry 4.0—State of Research
2. Materials and Methods
- (S1)—Sustainability; it was the largest area due to the age/maturity of the concept (1987—the Bruntland report—was the beginning of the concept of “Sustainability”). The time span of the analysed period is 1987–2019.
- (S2)—Industry 4.0, whose time span in the analyzed period was 2011–2019. The beginning of this research area is 2011, when the German government introduced an industrial development strategy based on high and intelligent technology. The author of the name “Industry 4.0” is Henning Kagermann (2011) [1].
- (S3)—Sustainable Industry 4.0; the time span of the analysed period is 2014–2019. It was assumed that “Sustainable Industry 4.0” is an evolved form of Industry 4.0 towards sustainable development.
3. Results of Bibliometric Analysis
3.1. Results of the Bibliometric Analysis in the Segment (S1): Sustainability
- In the Scopus database (B1), this keyword has 207,494 results, including open access: 39,503,
- In the WoS database (B2): 155,278 results, of which open access: 44,549 scientific papers,
- In Google Scholar, in 1000 papers, there were 371,633 quotes (2020 June 29), including 11,261.61 quotes per year and 371.63 quotes per paper,
- The average number of authors per publication (paper) was 2.21 (median 2),
- The Hirsch index for “Sustainability” was: 289 (a = 4.45, m = 8.76).
- In the Scopus database (B1), this keyword has 2276 results, including 343 in open access,
- In the WoS database (B2), there were 1491 results, including 414 in open access,
- Citations in Google Scholar (2020 June 29) were 122,157 for 1000 papers, including 4524.33 citations per year and 122.16 citations per paper,
- The average number of authors per publication (paper) was 2.35 (median 2),
- The Hirsch index for “Sustainable business” was: 168 (a = 4.33, m = 6.22).
- In Scopus database (B1), this keyword was mentioned in 5875 papers, including 1161 in open access,
- In the WoS database (B2), 4812 papers were found, including 1287 in open access,
- In Google Scholar, there were 123,226 citations for 1000 papers (2020 June 29), including 3735.33 citations per year and 123.27 citations per paper,
- The average number of authors per publication (paper) was 2.93 (median 3),
- The Hirsch index for “Sustainable production” was 179 (a = 3.85, m = 5.42).
- In Google Scholar, the most citations for the keyword “Sustainability” were for: Dierickx, I., and Cool, K. (1989) [47], cited by 12,219 (394.16 per year). The second place belonged to: Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. (2002) [48]—cited by 6629 (368.28 per year), and the third place belonged to: Carroll, A.B., and Buchholtz, A.K. (2014) [49]—cited by 5436 (906 per year). The next places in the number of citations category belonged to the authors, who obtained results above 3000: Mowforth, M. and Munt, I. (2015) [50], cited by 3919 (783.80 per year), Dyllick, T., and Hockerts, K. (2002) [51], cited by 3814 (211.89 per year), Turner, B.L., Kasperson, R.E., Matson, P.A. (2003) [52], cited by 3791 (223.00 per year), Kates, RW, Clark, WC, Corell, R., Hall, J.M. (2001) [53], cited by 3225 (169.74 per year), Pauly, D., Christensen, V., Guénette, S., Pitcher, T.J. (2002) [54], cited by 3365 (186.94 per year), Fullan, M. (2005) [55], cited by 3333 (222.20 per year), Newman, P., and Kenworthy J. (1999) [56], cited by 3284 (163.24 per year), Tilman, D., Wedin, D., Knops, J. (1996) [57], cited by 3047 (126.96 per year).
- For “Sustainable business” in Google Scholar (for 1000 analyzed papers), a lot of citations were for two scientific aticles: Bocken, N.M.P, Short, S.W, Rana, P., Evans, S. (2014) [45] Elsevier, cited by 1861 (310.17 per year); Boons, F., Lüdeke-Freund, F. (2013) [58], Elsevier, cited by 1529 (218.43 per year).
3.2. Results of the Bibliometric Analysis in the Segment (S2): Industry 4.0
3.3. Results of the Bibliometric Analysis in the Segment (S3): Sustainable Industry 4.0
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kagermann, H. Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. Industriellen Revolution. In Proceedings of the VDI-Nachrichten, Berli, Germany, 1 April 2011. [Google Scholar]
- Kagermann, H.; Helbig, J.; Hellinger, A.; Wahlster, W. Recommendations for Implementing the Strategic Initiative Industry 4.0: Securing the Future of German Manufacturing Industry. Final Report of the Industry 4.0 Working Group. Forschungsunion. 2013. Available online: http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf (accessed on 6 July 2020).
- Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Umsetzungsempfehlungen für das Zukunfsprojekt Industrie 4.0, Bundesministerium für Bildung und Forschung, Berlin, Germany. 2013. Available online: https://www.bmbf.de/files/Umsetzungsempfehlungen_Industrie4_0.pdf (accessed on 6 July 2020).
- Beier, G.; Ullrich, A.; Niehoff, S.; Reißig, M.; Habich, M. Industry 4.0: How it is defined from a sociotechnical perspective and how much sustainability it includes—A literature review. J. Clean. Prod. 2020, 259, 120856. [Google Scholar] [CrossRef]
- Niehoff, S.; Beier, G. Industrie 4.0 and a sustainable development: A short study on the perception and expectations of experts in Germany. Int. J. Innov. Sustain. Dev. 2018, 12, 360. [Google Scholar] [CrossRef] [Green Version]
- Birkel, H.; Veile, J.W.; Müller, J.M.; Hartmann, E.; Voigt, K.-I. Development of a Risk Framework for Industry 4.0 in the Context of Sustainability for Established Manufacturers. Sustainability 2019, 11, 384. [Google Scholar] [CrossRef] [Green Version]
- Kiel, D.; Müller, J.M.; Arnold, C.; Voigt, K.-I. Sustainable Industrial Value Creation: Benefits and Challenges of Industry 4.0. Int. J. Innov. Manag. 2017, 21, 1740015. [Google Scholar] [CrossRef]
- Schwab, K. The Fourth Industrial Revolution; The World Economic Forum: Cologny, Switzerland, 2016. [Google Scholar]
- Erboz, G. How to Define Industry 4.0: The Main Pillars of Industry 4.0. Available online: https://www.researchgate.net/publication/326557388_How_To_Define_Industry_40_Main_Pillars_Of_Industry_40 (accessed on 6 July 2020).
- Pilloni, V. How Data Will Transform Industrial Processes: Crowdsensing, Crowdsourcing and Big Data as Pillars of Industry 4.0. Futur. Internet 2018, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios, A Literature Review; Working Paper; Technische Universität: Dortmund, Germany, 2015. [Google Scholar]
- Saniuk, S.; Grabowska, S.; Gajdzik, B. Social Expectations and Market Changes in the Context of Developing the Industry 4.0 Concept. Sustainability 2020, 12, 1362. [Google Scholar] [CrossRef] [Green Version]
- Santos, K.; Loures, E.; Piechnicki, F.; Canciglieri, O. Opportunities Assessment of Product Development Process in Industry 4.0. Procedia Manuf. 2017, 11, 1358–1365. [Google Scholar] [CrossRef]
- Berners-Lee, T.; Hendler, J.; Lassila, O. The Semantic Web. Sci. Am. 2001, 284, 34–43. [Google Scholar] [CrossRef]
- Lee, E.A. Cyber-physical systems-are computing foundations adequate. In Position Paper for NSF Workshop on Cyber-Physical Systems: Research Motivation, Techniques and Roadmap; Citeseer: Princeton, NJ, USA, 2006. [Google Scholar]
- Lee, J.; Bagheri, B.; Kao, H. Research Letters: A Cyber-Physical Systems Architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Gajdzik, B. Development of business models and their key components in the context of cyber-physical production systems in Industry 4.0. In Scalability and Sustainability of Business Models in Circular, Sharing and Networked Economies; Jabłoński, A., Jabłoński, M., Eds.; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2020; Chapter 3; pp. 73–94. [Google Scholar]
- Azkuna, I. Smart Cities Study: International Study on the Situation of ICT, Innovation and Knowledge in Cities; The Committee of Digital and Knowledge-Based Cities of UCLG: Bilbao, Spain, 2012. [Google Scholar]
- Mitchell, W. Intelligent cities. e-J. Knowl. Soc. 2007. Available online: https://www.uoc.edu/uocpapers/5/dt/eng/mitchell.pdf (accessed on 6 July 2020).
- Grabowska, S.; Gajdzik, B.; Saniuk, S. The role and impact of industry 4.0 on business models. In Sustainable Logistics and Production in Industry 4.0. New Opportunities and Challenges; Grzybowska, K., Awasthi, A., Sawhney, R., Eds.; Springer: New York, NY, USA, 2020; pp. 31–50. [Google Scholar]
- Bluszcz, A. Classification of the European Union member states according to the relative level of sustainable development. Qual. Quant. 2015, 50, 2591–2605. [Google Scholar] [CrossRef]
- Hoffa-Dąbrowska, P.; Grzybowska, K. Simulation modeling of the sustainable supply chain. Sustainability 2020, 12, 6007. [Google Scholar] [CrossRef]
- Hąbek, P. CSR Reporting Practices in Visegrad Group Countries and the Quality of Disclosure. Sustainability 2017, 9, 2322. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, F.; Colicchia, C.; Creazza, A.; Noè, C. Literature review on the ‘Smart Factory’ concept using bibliometric tools. Int. J. Prod. Res. 2017, 55, 6572–6591. [Google Scholar] [CrossRef]
- Wang, S.; Wan, J.; Li, D.; Zhang, C. Implementing Smart Factory of Industrie 4.0: An Outlook. Int. J. Distrib. Sens. Netw. 2016, 12. [Google Scholar] [CrossRef] [Green Version]
- Stock, T.; Seliger, G. Opportunities of Sustainable Manufacturing in Industry 4.0, 13th Global Conference on Sustainable Manufacturing—Decoupling Growth from Resource Use. Procedia CIRP 2016, 40, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Berger, R. Industry 4.0—The New Industrial Revolution—How Europe Will Succeed; Roland Berger Strategy Consultants: Munich, Germany, 2014. [Google Scholar]
- Norton, M.J. Introductory Concepts in Information Science; Information Today, Inc.: New Jersey, NJ, USA, 2001. [Google Scholar]
- Polanco, X. Infométrie et ingénierie de la connaissance. In Les Sciences de L’Information Bibliométrie Scientométrie Infométrie; Noyer, J.M., Ed.; Presses Universitaires de Rennes: Rennes, France, 1995. [Google Scholar]
- Du, H.; Li, B.; Brown, M.A.; Mao, G.; Rameezdeen, R.; Chen, H. Expanding and shifting trends in carbon market research: A quantitative bibliometric study. J. Clean. Prod. 2015, 103, 104–111. [Google Scholar] [CrossRef]
- Grzybowska, K.; Awasthi, A. Literature review on sustainable logistics and sustainable production for Industry 4.0. In Sustainable Logistics and Production in Industry 4.0 New Opportunities and Challenges; Grzybowska, K., Awasthi, A., Sawhney, R., Eds.; Springer: New York, NY, USA, 2020; pp. 1–19. [Google Scholar]
- Kipper, L.M.; Furstenau, L.B.; Hoppe, D.; Frozza, R.; Iepsen, S.; Iespen, S. Scopus scientific mapping production in industry 4.0 (2011–2018): A bibliometric analysis. Int. J. Prod. Res. 2019, 58, 1605–1627. [Google Scholar] [CrossRef]
- Taticchi, P.; Tonelli, F.; Pasqualino, R. Performance measurement of sustainable supply chains: A literature review and a research agenda. Int. J. Prod. Perform. Manag. 2013, 62, 782–804. [Google Scholar] [CrossRef]
- Seebacher, G.; Winkler, H. A Citation Analysis of the Research on Manufacturing and Supply Chain Flexibility. Int. J. Prod. Res. 2013, 51, 3415–3427. [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Wang, J.-J.; Chen, H.; Rogers, D.S.; Ellram, L.M.; Grawe, S.J. A bibliometric analysis of reverse logistics research (1992–2015) and opportunities for future research. Int. J. Phys. Distrib. Logist. Manag. 2017, 47, 666–687. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Awasthi, A. City logistics: A review and bibliometric analysis. Int. J. Bibliometr. Bus. Manag. 2018, 1, 160–188. [Google Scholar] [CrossRef]
- Ziegler, B. Methods for Bibliometric Analysis of Research: Renewable Energy Case Study; Massachusetts Institute of Technology: Cambridge, MA, USA, 2009. [Google Scholar]
- Saka, A.; Igami, M. Mapping modern science using co-citation analysis. In IV ’07: Proceedings of the 11th International Conference Information Visualization 2007; IEEE Computer Society: Washington, DC, USA; pp. 453–458.
- Hart, C. Doing a Literature Review: Releasing the Social Science Research Imagination; Sage Publications: New York, NY, USA, 1998. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.J.; Mulrow, C.D.; Haynes, R.B. Systematic Reviews: Synthesis of Best Evidence for Clinical Decisions. Ann. Intern. Med. 1997, 126, 376–380. [Google Scholar] [CrossRef]
- Mulrow, C.D. Systematic Reviews: Rationale for systematic reviews. Br. Med. J. 1994, 309, 597–599. [Google Scholar] [CrossRef]
- Czakon, W. Metodyka systematycznego przeglądu literatury. Przegląd Organizacji 2011, 3, 57–61. [Google Scholar] [CrossRef]
- Bocken, N.; Short, S.; Rana, P.; Evans, S. A literature and practice review to develop sustainable business model archetypes. J. Clean. Prod. 2014, 65, 42–56. [Google Scholar] [CrossRef] [Green Version]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Dierickx, I.; Cool, K. Asset Stock Accumulation and Sustainability of Competitive Advantage. Manag. Sci. 1989, 35, 1504–1511. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.B.; Buchholtz, A.K. Business and Society: Ethics, Sustainability, and Stakeholder Management; Nelson Education: Toronto, ON, Canada, 2014. [Google Scholar]
- Mowforth, M.; Munt, I. Tourism and Sustainability: Development, Globalisation and New Tourism in the Third World; Taylor & Francis Group: London, UK, 2015. [Google Scholar]
- Dyllick, T.; Hockerts, K.N. Beyond the business case for corporate sustainability. Bus. Strat. Environ. 2002, 11, 130–141. [Google Scholar] [CrossRef]
- Turner, B.L.; Kasperson, R.E.; Matson, P.A. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kates, R.W.; Clark, W.C.; Corell, R.; Hall, J.M. Sustainability Science. 2001. Available online: https://www.science.sciencemag.org (accessed on 15 July 2020).
- Pauly, D.; Christensen, V.; Guénette, S.; Pitcher, T.J.; Sumaila, U.R.; Walters, C.J.; Watson, R.A.; Zeller, D. Towards sustainability in world fisheries. Nature 2002, 418, 689–695. [Google Scholar] [CrossRef]
- Fullan, M. Leadership & Sustainability: System Thinkers in Action; Corwin Press: Thousand Oaks, CA, USA, 2005. [Google Scholar]
- Newman, P.; Kenworthy, J. Sustainability and Cities: Overcoming Automobile Dependence; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Tilman, D.; Wedin, D.; Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 1996, 379, 718–720. [Google Scholar] [CrossRef]
- Boons, F.; Ludeke-Freund, F. Business models for sustainable innovation: State-of-the-art and steps towards a research agenda. J. Clean. Prod. 2013, 45, 9–19. [Google Scholar] [CrossRef]
- Brezet, H. Ecodesign-A Promising Approach to Sustainable Production and Consumption; United Nations Environmental Programme (UNEP): Nairobi, Kenya, 1997. [Google Scholar]
- Vermeir, I.; Verbeke, W. Sustainable Food Consumption: Exploring the Consumer “Attitude–Behavioral Intention” Gap. J. Agric. Environ. Ethic 2006, 19, 169–194. [Google Scholar] [CrossRef]
- Morrar, R.; Arman, H. The Fourth Industrial Revolution (Industry 4.0): A Social Innovation Perspective. Technol. Innov. Manag. Rev. 2017, 7, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Saf. Environ. Prot. 2018, 117, 408–425. [Google Scholar] [CrossRef]
- Sarkar, M.; Sarkar, B. How does an industry reduce waste and consumed energy within a multi-stage smart sustainable biofuel production system? J. Clean. Prod. 2020, 262, 121200. [Google Scholar] [CrossRef]
- Shmeleva, I.A.; Shmelev, S.E. How sustainable is smart and how smart is sustainable? Sustain. Cities Reimagined 2019, 316–328. [Google Scholar] [CrossRef]
- Gazzola, P.; Del Campo, A.G.; Onyango, V. Going green vs going smart for sustainable development: Quo vadis? J. Clean. Prod. 2019, 214, 881–892. [Google Scholar] [CrossRef] [Green Version]
- Haseeb, M.; Hussain, H.I.; Slusarczyk, B.; Jermsittiparsert, K. Industry 4.0: A Solution towards Technology Challenges of Sustainable Business Performance. Soc. Sci. 2019, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Sangwan, S.R.; Bhatia, M.P.S. Sustainable Development in Industry 4.0. In A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development; Springer International Publishing: New York, NY, USA, 2019; pp. 39–56. [Google Scholar]
- Stock, T.; Obenaus, M.; Kunz, S.; Kohl, H. Industry 4.0 as enabler for a sustainable development: A qualitative assessment of its ecological and social potential. Process. Saf. Environ. Prot. 2018, 118, 254–267. [Google Scholar] [CrossRef]
- Erol, S. Where is the Green in Industry 4.0? Or How Information Systems can play a role in creating Intelligent and Sustainable Production Systems of the Future. (Responsible, Ethical, Social/Sustainable) IT and IS. 2016. Available online: https://www.researchgate.net/publication/318645767_Where_is_the_Green_in_Industry_40_or_How_Information_Systems_can_play_a_role_in_creating_Intelligent_and_Sustainable_Production_Systems_of_the_Future (accessed on 10 July 2020).
- Tirabeni, L.; De Bernardi, P.; Forliano, C.; Franco, M. How Can Organisations and Business Models Lead to a More Sustainable Society? A Framework from a Systematic Review of the Industry 4.0. Sustainability 2019, 11, 6363. [Google Scholar] [CrossRef] [Green Version]
- Siham, G. Farag Application of Smart Structural System for Smart Sustainable Cities. In Proceedings of the 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, Oman, 15–16 January 2019; IEEE: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Lom, M.; Pribyl, O.; Svitek, M. Industry 4.0 as a part of smart cities. In Proceedings of the 2016 Smart Cities Symposium Prague (SCSP), Prague, Czech Republic, 26–27 May 2016; Available online: https://www.researchgate.net/publication/303805693_Industry_40_as_a_Part_of_Smart_Cities#fullTextFileContent (accessed on 10 July 2020).
- Escamilla Solano, S.; Plaza Casado, P.; Flores Ureba, S. Smart Cities and Sustainable Development. In A Case Study. Innovation, Technology, and Knowledge Management; Springer International Publishing: New York, NY, USA, 2016; pp. 65–77. [Google Scholar]
- Vaquero-García, A.; Álvarez-García, J.; Peris-Ortiz, M. Urban Models of Sustainable Development from the Economic Perspective: Smart Cities. In Innovation, Technology, and Knowledge Management; Springer International Publishing: New York, NY, USA, 2016; pp. 15–29. [Google Scholar]
- Laconte, P. Smart and Sustainable Cities: What Is Smart?—What Is Sustainable? In Smart and Sustainable Planning for Cities and Regions; Springer International Publishing: New York, NY, USA, 2018; pp. 3–19. [Google Scholar]
- Bululukova, D.; Wahl, H. Towards a Sustainable Smart Cities Integration in Teaching and Research. In Proceedings of the 4th International Conference on Smart Cities and Green ICT Systems, Lisbon, Portugal, 20–22 May 2015; SCITEPRESS—Science and and Technology Publications: Setúbal, Portugal, 2015. [Google Scholar] [CrossRef]
- Bibri, S.E. Approaches to Futures Studies: A Scholarly and Planning Approach to Strategic Smart Sustainable City Development. In The Urban Book Series; Springer International Publishing: New York, NY, USA, 2018; pp. 601–660. [Google Scholar] [CrossRef]
- Bibri, S.E. Introduction: The Rise of Sustainability, ICT, and Urbanization and the Materialization of Smart Sustainable Cities. In The Urban Book Series; Springer International Publishing: New York, NY, USA, 2018; pp. 1–38. [Google Scholar] [CrossRef]
- Bueti, M.C.; Ip, C. Conclusions: Putting “sustainable” in smart cities. In Smart City Emergence; Elsevier: Amsterdam, The Netherlands, 2019; pp. 435–437. [Google Scholar] [CrossRef]
- Somayya, M.; Ramaswamy, R. Amsterdam Smart City (ASC): Fishing village to sustainable city. In The Sustainable City XI; WIT Press: New Forest National Park, UK, 2016. [Google Scholar] [CrossRef]
- Schipper, R.; Silvius, G. Characteristics of Smart Sustainable City Development: Implications for Project Management. Smart Cities 2018, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Govada, S.S.; Rodgers, T.; Cheng, L.; Chung, H. Smart Environment for Smart and Sustainable Hong Kong. In Smart Environment for Smart Cities; Springer: Singapore, 2019; pp. 57–90. [Google Scholar] [CrossRef]
- Al Khalifa, F.A. Sustainable Smart Urbanism Indicators in Bahrain. In Proceedings of the 2nd Smart Cities Symposium (SCS 2019), Bahrain, Bahrain, 24–26 March 2019. [Google Scholar] [CrossRef]
- Trillo, C. Smart Specialisation Strategies as Drivers for (Smart) Sustainable Urban Development. In Sustainable Urbanization; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Yonezawa, T. Fujisawa, Towards a Sustainable Smart City. In Enablers for Smart Cities; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 221–237. [Google Scholar] [CrossRef]
- Lee, T. Are Smart Cities Sustainable? Toward the Integration of the Sustainable and Smart City. J. Environ. Policy Adm. 2017, 25, 129–151. [Google Scholar] [CrossRef]
- Júnior, C.M.; Ribeiro, D.M.N.M.; Pereira, R.D.S.; Bazanini, R.; Bazanini, R. Do Brazilian cities want to become smart or sustainable? J. Clean. Prod. 2018, 199, 214–221. [Google Scholar] [CrossRef]
- Dabeedooal, Y.J.; Dindoyal, V.; Allam, Z.; Jones, D.S. Smart Tourism as a Pillar for Sustainable Urban Development: An Alternate Smart City Strategy from Mauritius. Smart Cities 2019, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Vakula, D.; Raviteja, B. Smart public transport for smart cities. In Proceedings of the 2017 International Conference on Intelligent Sustainable Systems (ICISS), Thirupur, India, 12–13 December 2017; IEEE: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Hidayatno, A.; Destyanto, A.R.; Hulu, C.A. Industry 4.0 technology implementation impact to industrial sustainable energy in Indonesia: A model conceptualization. In Energy Procedia; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Wang, L. Sustainable Bioenergy Production; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Kakegawa, M. Sustainable and Smart Energy Society. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Gitelman, L.; Kozhevnikov, M.; Adam, L. Sustainable energy for smart city. Int. J. Energy Prod. Manag. 2019, 4, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Caiado, R.G.G.; Quelhas, O.L.G. Factories for the Future: Toward Sustainable Smart Manufacturing. In Encyclopedia of the UN Sustainable Development Goals; Springer International Publishing: New York, NY, USA, 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Lafferty, C. Sustainable Industry 4.0: Product decision-making information systems, data-driven innovation, and smart industrial value creation. J. Self-Gov. Manag. Econ. 2019, 7, 19–24. [Google Scholar]
- Cosgrave, K.W. The smart cyber-physical systems of sustainable industry 4.0: Innovation-driven manufacturing technologies, creative cognitive computing, and advanced robotics. J. Self-Gov. Manag. Econ. 2019, 7, 7–13. [Google Scholar]
- Garrido-Hidalgo, C.; Hortelano, D. IoT heterogeneous mesh network deployment for human-in-the-loop challenges towards a social and sustainable Industry 4.0. IEEE Access 2018, 6, 28417–28437. [Google Scholar] [CrossRef]
- Tseng, M.-L.; Tan, R.; Chiu, A.; Chien, C.-F.; Kuo, T.C. Circular economy meets industry 4.0: Can big data drive industrial symbiosis? Resour. Conserv. Recycl. 2018, 131, 146–147. [Google Scholar] [CrossRef]
- Machado, C.G.; Winroth, M.P.; Da Silva, E.H.D.R. Sustainable manufacturing in Industry 4.0: An emerging research agenda. Int. J. Prod. Res. 2019, 58, 1462–1484. [Google Scholar] [CrossRef]
- Sofyan, N.; Yuwono, A.H.; Harjanto, S. Green and Smart Materials Properties Design and Production for Sustainable Future. Int. J. Technol. 2016, 7, 362. [Google Scholar] [CrossRef] [Green Version]
- Warren, C.; Becken, S.; Nguyen, K.; Stewart, R. Transitioning to smart sustainable tourist accommodation: Service innovation results. J. Clean. Prod. 2018, 201, 599–608. [Google Scholar] [CrossRef]
- Agarwal, P.; Singh, V.; Saini, G.L.; Panwar, D. Sustainable Smart-Farming Framework. In Advances in Environmental Engineering and Green Technologies; IGI Global: Hershey, PA, USA, 2019; pp. 147–173. [Google Scholar] [CrossRef] [Green Version]
- Thigpen, J. Smart Offshore Ecosystem—Enabling a Safe and Sustainable Offshore Environment Utilizing Smart Technology. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2019. [Google Scholar] [CrossRef]
- Cedeńo, J.; Hannola, L.; Ojanen, V. Knowledge Requirements for Sustainable Smart Service Design. In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Vienna, Austria, 17–19 September 2019; SCITEPRESS—Science and Technology Publications: Setúbal, Portugal, 2019. [Google Scholar] [CrossRef]
- Smart Sustainable Data-driven Manufacturing: Cyber-Physical Production Systems and Internet of Things Sensing Networks. J. Self-Gov. Manag. Econ. 2019, 7, 7. [CrossRef] [Green Version]
- Lee, J.; Kao, H.-A.; Yang, S. Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia CIRP 2014, 16, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Luthra, S.; Mangla, S.K. Evaluating challenges to Industry 4.0 initiatives for supply chain sustainability in emerging economies. Process. Saf. Environ. Prot. 2018, 117, 168–179. [Google Scholar] [CrossRef]
- Manavalan, E.; Jayakrishna, K. A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements. Comput. Ind. Eng. 2019, 127, 925–953. [Google Scholar] [CrossRef]
- Hofmann, E.; Rüsch, M. Industry 4.0 and the current status as well as future prospects on logistics. Comput. Ind. 2017, 89, 23–34. [Google Scholar] [CrossRef]
- Ferro, E.; Osella, M. Smart City Governance for Sustainable Public Value Generation. In Smart Cities and Smart Spaces; IGI Global: Hershey, PA, USA, 2019; pp. 1377–1392. [Google Scholar] [CrossRef]
- Mitomo, H.; Fuke, H.; Bohlin, E. The Smart Revolution Towards the Sustainable Digital Society; Edward Elgar Publishing: Cheltenham/Camberley, UK, 2015. [Google Scholar] [CrossRef]
- Bauer, W.; Hämmerle, M.; Schlund, S.; Vocke, C. Transforming to a Hyper-connected Society and Economy—Towards an “Industry 4. 0.” Procedia Manuf. 2015, 3, 417–424. [Google Scholar] [CrossRef]
- Salimova, T.; Guskova, N.; Krakovskaya, I.; Sirota, E. From industry 4.0 to Society 5.0: Challenges for sustainable competitiveness of Russian industry. IOP Conf. Series: Mater. Sci. Eng. 2019, 497, 012090. [Google Scholar] [CrossRef]
- Müller, J.M.; Voigt, K.-I. Sustainable Industrial Value Creation in SMEs: A Comparison between Industry 4.0 and Made in China 2025. Int. J. Precis. Eng. Manuf. Technol. 2018, 5, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Sachs, J.D.; Sanders, B. Building the New American Economy; Columbia University Press: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Müller, J.M.; Kiel, D.; Voigt, K.-I. What Drives the Implementation of Industry 4.0? The Role of Opportunities and Challenges in the Context of Sustainability. Sustainability 2018, 10, 247. [Google Scholar] [CrossRef] [Green Version]
Steps | Stages | Detailing the Stages | Comments |
---|---|---|---|
Planning: | research subject | Evolution of Industry 4.0 into sustainability | result: new scientific subject: Sustainable Industry 4.0 |
research goals (question forms) | What are the dynamics of scientific publications? What are the research areas of scientists? What are the sources and types of scientific publications? | goals apply to particular segments (S1, S2, S3) | |
databases (B) | B2: Web of Science (WoS) database B3: citations of publications in Google Scholar | the choice of bases was made due to their size and availability | |
segment (S): | S1: Sustainability S2: Industry 4.0 S3: Sustainable Industry 4.0 | assumption: the first two segments will form the third segment | |
time period (T): | T1: for “Sustainability” (S1) from 1987 to 2019 T2: for “Industry 4.0” (S2) from 2011 to 2019 T3: for “Sustainable Industry 4.0” (S3) from 2014 to 2019 | the used time periods for particular segments are different because particular segments have different life cycles: the longest for “Sustainability”, longer for “Industry 4.0” and the shortest for “Sustainable Industry 4.0”. | |
search fields (F): | title, abstract, keywords (B1), topic: title, abstract, keywords (B2), title, keywords (B3); document type: all, access type: all, limit: time | these fields are more representative | |
keyword (KW)
| S1 KW1: sustainability S1 KW2: sustainable business S1 KW3: sustainable production | used keywords in the layered analysis were fixed on based experts knowledge | |
| S2 KW1: industry 4.0 S2 KW2: smart factory S2 KW3: smart production | ||
| S3 KW1: sustainable industry 4.0 S3 KW2: sustainable smart production | presumption about the information gap in the research subject | |
indicator (I)/filter (F): | I1: number of publications (B1, B2, B3), filter by year (F1) I2: type and form documents (B1, B2), filter by year (F1) I3: number of citations (B3), citation per year (B3), citation per author (B3) I4: author publications (B1, B2, B3), filter by name author/F2 I5: countries (B1, B2) I6: subjects and research areas (B1, B2) | according to form of a database (B) | |
Executing | form of searching: | automatic (by using program Publish or Perish), manual | manual form was used for preparing a discussion as the part of the publication |
search results: | S1 KW1 I1, S1 KW1 I2, S1 KW1 I3… etc. for each segments (S1, S2, S3) | results of searching data bases were organized into three parts of the paper according to analyzed segments: S1, S2, S3 | |
Reporting | form of reporting: | description, presentation: tables, figures, diagrams | additional information about analyzed subject by analyzing particular scientific papers |
Data-Base | Keyword | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|---|
Scopus (B1) | S1 KW1 | 9184 | 10,594 | 11,854 | 13,585 | 14,338 | 15,673 | 17,150 | 20,174 | 23,106 | 26,215 |
S1 KW2 | 93 | 124 | 129 | 151 | 140 | 171 | 187 | 224 | 295 | 322 | |
S1 KW3 | 193 | 253 | 304 | 356 | 395 | 468 | 523 | 590 | 703 | 843 | |
WoS (B2) | S1 KW1 | 5808 | 6560 | 7293 | 8387 | 9655 | 13,754 | 15,575 | 18,044 | 20,185 | 22,361 |
S1 KW2 | 47 | 57 | 70 | 86 | 81 | 137 | 154 | 197 | 239 | 248 | |
S1 KW3 | 152 | 205 | 224 | 290 | 318 | 435 | 472 | 538 | 616 | 717 |
Database | Keyword | Source Title | Record Count | % of Total Search Results (%) | Total Search Results (100%) |
---|---|---|---|---|---|
Scopus (B1) | S1 KW1 | Sustainability | 6135 | 2.957 | 207,497 |
Journal of Cleaner Production | 3720 | 1.793 | |||
Ecological Economics | 1040 | 0.501 | |||
S1 KW2 | Journal of Cleaner Production | 127 | 5.580 | 2276 | |
Sustainability | 109 | 4.789 | |||
Business Strategy and the Environment | 29 | 1.274 | |||
S1 KW3 | Journal of Cleaner Production | 222 | 3.779 | 5875 | |
Acta Horticulturae | 170 | 2.894 | |||
Sustainability | 78 | 1.328 | |||
WoS (B2) | S1 KW1 | Sustainability | 5630 | 3.626 | 155,278 |
Journal of Cleaner Production | 4319 | 2.781 | |||
Ecological Economics | 1086 | 0.699 | |||
S1 KW2 | Journal of Cleaner Production | 120 | 8.045 | 1491 | |
Sustainability | 106 | 7.109 | |||
Business Strategy and the Environment | 23 | 1.543 | |||
S1 KW3 | Journal of Cleaner Production | 225 | 4.676 | 4812 | |
Acta Horticulturae | 151 | 3.138 | |||
Sustainability | 82 | 1.704 |
Author Name | ||||||
---|---|---|---|---|---|---|
Database | Keyword | 1 | 2 | 3 | 4 | 5 |
Scopus (B1) | S1 KW1 | Dincer, I. (117) | Azapagic, A. (116) | Sarkis, J. (112) | Lal, R. (90) | Nijkamp, P. (82) |
S1 KW2 | Svensson, G. (24) | Evans, S. (20) | Bocken, N.M.P.(14); Padin, C. (14) | Høgevold, N.M. (13); Wagner, B. (13) | Ferro, C. (8); Rana, P. (8) | |
S1 KW3 | Xu, B.Q. (12) | Alkaya, E. (11); Demirer, G.N. (11); Liang, Y. (11) | Centi, G. (9); Franke, J. (9); Nielsen, J. (9) | Azapagic, A. (8); Friedl, A. (8); Irabien, A. (8) | ||
WoS (B2) | S1 KW1 | Anonymous (445) | Zhang, Y. (200) | Wang, Y. (174) | Liu, Y. (173) | Li, Y. (163) |
S1 KW2 | Evans, S. (18) | Svensson, G. (16) | Bocken, N.M.P. (13) | Aagaard, A. (9) | Anonymus (9) | |
S1 KW3 | Centi, G. (15); Li, X.L. (15) | Perathoner, S. (14); Xu, B.Q. (14) | Hallenbeck, P.C. (13) |
Order in Search List: Country/Region | ||||||
---|---|---|---|---|---|---|
Database | Keyword | 1 | 2 | 3 | 4 | 5 |
Scopus (B1) | S1KW1 | United States (47,341) | UK (22,595) | Australia (14,152) | China (12,177) | Germany (11,374) |
S1KW2 | United States (435) | UK (311) | Germany (159) | Australia (132), India (132) | Netherlands (111) | |
S1KW3 | United States (943) | Germany (529) | China (527) | India (494) | UK (378) | |
WoS (B2) | S1KW1 | United States (35,108) | England (14,295) | China (11,653) | Australia (10,710) | Italy (8919) |
S1KW2 | United States (775) | China (531) | Germany (431) | India (354) | Italy (306) | |
S1KW3 | United States (775) | China (531) | Germany (431) | India (354) | Italy (306) |
Database | Keyword | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|
Scopus (B1) | S2 KW1 | 3 | 8 | 31 | 63 | 208 | 546 | 1146 | 2136 | 4079 |
S2 KW2 | 3 | 13 | 28 | 25 | 82 | 151 | 263 | 438 | 539 | |
S2 KW3 | 5 | 3 | 2 | 12 | 20 | 21 | 48 | 69 | 73 | |
WoS (B2) | S2 KW1 | 0 | 1 | 12 | 35 | 140 | 429 | 942 | 1465 | 1909 |
S2 KW2 | 0 | 5 | 4 | 12 | 31 | 86 | 140 | 230 | 179 | |
S2 KW3 | 1 | 2 | 1 | 5 | 4 | 17 | 40 | 45 | 51 |
Database | Keyword | Source Title | Record Count | % of Total Search Results (%) | Total Search Results (100%) |
---|---|---|---|---|---|
Scopus (B1) | S2 KW1 | Procedia Manufacturing | 284 | 3.446 | 8241 |
Procedia Computer Science | 229 | 2.779 | |||
Iop Conference Series Materials Science and Engineering | 200 | 2.427 | |||
S2 KW2 | Procedia Manufacturing | 57 | 3.696 | 1542 | |
Lecture Notes in Computer Science including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes In Bioinformatics | 49 | 3.178 | |||
Procedia CIRP | 42 | 2.724 | |||
S2 KW3 | Procedia Manufacturing | 23 | 9.091 | 253 | |
Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics | 9 | 3.557 | |||
ACM International Conference Proceeding Series | 7 | 2.767 | |||
WoS (B2) | S2 KW1 | IFAC Papersonline | 188 | 3.811 | 4933 |
Procedia Manufacturing | 158 | 3.203 | |||
ATP Edition | 126 | 2.554 | |||
S2 KW2 | Procedia CIRP | 29 | 4.234 | 685 | |
(1) IFAC Papersonline (2) IFIP Advances in Information and Communication Technology | 19 | 2.774 | |||
IEEE Access | 18 | 2.628 | |||
S2 KW3 | Procedia Manufacturing | 13 | 7.831 | 166 | |
(1) Computers Industrial Engineering (2) IFAC Papersonline | 5 | 3.012 | |||
(1) 27TH International Conference on Flexible Automation and Intelligent Manufacturing FAIM2017 (2) 7TH Conference on Learning Factories CLF 2017 | 4 | 2.410 |
Author Name | ||||||
---|---|---|---|---|---|---|
Database | Keyword | 1 | 2 | 3 | 4 | 5 |
Scopus (B1) | S2 KW1 | Zakoldaev, D.A. (41) Zharinov, I.O. (41) | Rauch, E. (38) Shukalov, A.V. (38) | Matt, D.T. (33) | Telukdarie, A. (26) | Rivera, M. (25), Wuest T. (25) |
S2 KW2 | Zharinov, I.O. (23) | Shukalov, A.V. (22) | Li, D. (17) Wan, J. (17) | Gurjanov, A.V. (12) | Wang, S. (10) | |
S2 KW3 | Chien, C.F. (10) | Madsen, O. (5) | Cheng, Y. (4), Møller, C. (4) Sarkar, B. (4) Tao, F. (4) Zhang, Y. (4) | Bakir, D. (3) Chen, Y.J. (3) Dhungana, D. (3) | ||
WoS (B2) | S2 KW1 | Anonymous (52) | Li, D. (23) | Wan J.F. (20) | Leitao P (19) Romero D (19) | Garcia MV (18) Jeschke S (18) Li, Y. (18) Rauch E (18) |
S2 KW2 | Li, D. (14) Wan, J.F. ( 14) | Kim, H. (9) Kim, S. (9) Wang SY (9) | Jeong, J. (8) Lee, H. (8) Shukalov, A.V. (8) Zakoldaev, DA (8) Zharinov I.O. (8) | Lee, J. (7) Lee, J.Y. (7) Liu, C.L. (7) Zhang, C.H. (7) Zhong, R.Y. (7) | Anonymous (6) Bauernhansl, T. (6) | |
S2 KW3 | Chien, C.F. (11) | Cheng, Y. (4) Madsen, O. (4) Sarkar, B. (4) Tao, F. (4) Zhang, Y.P. (4) | Alavian, P. (3) Chen, Y.J. (3) Eun, Y. (3) Guo, H.Z (3) Hong, T.Y. (3) Meerkov, S.M. (3) Sarkar, M. (3) | Lorenzoni, A. (2) Luder, A. (2) Mazak, A. (2) Moller, C. (2) Mortensen, S.T. (2) Neser, F.W.C. (2) | Bartels, G. (1) Beghi, A. (1), Calay, R.K. (1) |
Order in Search List: Country/Region | ||||||
---|---|---|---|---|---|---|
Database | Keyword | 1 | 2 | 3 | 4 | 5 |
Scopus (B1) | S2 KW1 | Germany (1591) | Italy (824) | United States (487) | China (462) | United Kingdom (394) |
S2 KW2 | Germany (317) | South Korea (219) | China (154) | Italy (119) | United States (108) | |
S2 KW3 | Germany (66) | China (30) | Austria (25) | United States (17) | Taiwan (15) | |
WoS (B2) | S2 KW1 | Germany (992) | Italy (498) | China (408) | Spain (290) | United States (268) |
S2 KW2 | Germany (139) | China (114) | South Korea (103) | Italy (58) | United States (49) | |
S2 KW3 | Germany (51) | China (22) | Taiwan (16) | Austria (13) | South Korea (11) |
Database | Title | Author | Year | Place | Citation/Time Cited |
---|---|---|---|---|---|
Scopus | The smart cyber-physical systems of sustainable Industry 4.0: Innovation-driven manufacturing technologies, creative cognitive computing, and advanced robotics | Cosgrave, K.W. | 2019 | Journal of Self-Governance and Management Economics 7(3), pp. 7–13 | 0 citation/the Scopus database |
Scopus and Google Scholar | Sustainable Industry 4.0: Product decision-making information systems, data-driven innovation, and smart industrial value creation | Lafferty, C. | 2019 | Journal of Self-Governance and Management Economics 7(2), pp. 19–24 | 1 citation/the Scopus database 4 citations/Google Scholar |
Scopus, WoS and Google Scholar | Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives | Kamble, S.S., Gunasekaran, A., Gawankar, S.A. | 2018 | Process Safety and Environmental Protection 117, pp. 408–425 | 105 citations/the Scopus database 66 citations/the WoS 166/Google Scholar |
Scopus, WoS, and Google Scholar | IoT Heterogeneous Mesh Network Deployment for Human-in-the-Loop Challenges Towards a Social and Sustainable Industry 4.0 | Garrido-Hidalgo, C., Hortelano, D., Roda-Sanchez, L., (...), Ruiz, M.C., Lopez, V. | 2018 | IEEE Access 6, pp. 28417–28437 | 20 citations/the Scopus database 10 citations/the WoS 29/Google Scholar |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajdzik, B.; Grabowska, S.; Saniuk, S.; Wieczorek, T. Sustainable Development and Industry 4.0: A Bibliometric Analysis Identifying Key Scientific Problems of the Sustainable Industry 4.0. Energies 2020, 13, 4254. https://doi.org/10.3390/en13164254
Gajdzik B, Grabowska S, Saniuk S, Wieczorek T. Sustainable Development and Industry 4.0: A Bibliometric Analysis Identifying Key Scientific Problems of the Sustainable Industry 4.0. Energies. 2020; 13(16):4254. https://doi.org/10.3390/en13164254
Chicago/Turabian StyleGajdzik, Bożena, Sandra Grabowska, Sebastian Saniuk, and Tadeusz Wieczorek. 2020. "Sustainable Development and Industry 4.0: A Bibliometric Analysis Identifying Key Scientific Problems of the Sustainable Industry 4.0" Energies 13, no. 16: 4254. https://doi.org/10.3390/en13164254
APA StyleGajdzik, B., Grabowska, S., Saniuk, S., & Wieczorek, T. (2020). Sustainable Development and Industry 4.0: A Bibliometric Analysis Identifying Key Scientific Problems of the Sustainable Industry 4.0. Energies, 13(16), 4254. https://doi.org/10.3390/en13164254