# Digital Adaptive Hysteresis Current Control for Multi-Functional Inverters

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Digital Grid and Digital Grid Router

## 3. Adaptive Hysteresis Current Control

**Remark**

**1.**

## 4. Hysteresis Current Control for Multi-Functional Inverter

#### 4.1. Stand-Alone Mode

#### 4.2. Grid-Connected Mode

#### 4.3. Master Mode

**Remark**

**2.**

## 5. Experimental Results

#### 5.1. Stand-Alone Mode

#### 5.2. Grid-Connected Mode

#### 5.3. Master Mode

#### 5.4. Back-to-Back System

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Asrari, A.; Wu, T.; Lotfifard, S. The Impacts of Distributed Energy Sources on Distribution Network Reconfiguration. IEEE Trans. Energy Convers.
**2016**, 31, 606–613. [Google Scholar] [CrossRef] - Driesen, J.; Katiraei, F. Design for distributed energy resources. IEEE Power Energy Mag.
**2008**, 6, 30–40. [Google Scholar] - Khayyer, P.; Özgüner, Ü. Decentralized Control of Large-Scale Storage-Based Renewable Energy Systems. IEEE Trans. Smart Grid
**2014**, 5, 1300–1307. [Google Scholar] [CrossRef] - Marwali, M.N.; Dai, M.; Keyhani, A. Robust stability analysis of voltage and current control for distributed generation systems. IEEE Trans. Energy Convers.
**2006**, 21, 516–526. [Google Scholar] [CrossRef] - Werth, A.; Kitamura, N.; Tanaka, K. Conceptual Study for Open Energy Systems: Distributed Energy Network Using Interconnected DC Nanogrids. IEEE Trans. Smart Grid
**2015**, 6, 1621–1630. [Google Scholar] [CrossRef] - Abe, R.; Taoka, H.; McQuilkin, D. Digital Grid: Communicative Electrical Grids of the Future. IEEE Trans. Smart Grid
**2011**, 2, 399–410. [Google Scholar] [CrossRef] [Green Version] - Buso, S.; Malesani, L.; Mattavelli, P. Comparison of current control techniques for active filter applications. IEEE Trans. Ind. Electron.
**1998**, 45, 722–729. [Google Scholar] [CrossRef] [Green Version] - Irwin, J.D. Control in Power Electronics: Selected Problems, 1st ed.; Academic Press: New York, NY, USA, 2002. [Google Scholar]
- Buso, S.; Fasolo, S.; Malesani, L.; Mattavelli, P. A dead-beat adaptive hysteresis current control. IEEE Trans. Ind. Appl.
**2000**, 36, 1174–1180. [Google Scholar] [CrossRef] - Malesani, L.; Tenti, P. A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency. IEEE Trans. Ind. Appl.
**1990**, 26, 88–92. [Google Scholar] [CrossRef] - Poulsen, S.; Andersen, M.A.E. Hysteresis controller with constant switching frequency. IEEE Trans. Consum. Electron.
**2005**, 51, 688–693. [Google Scholar] [CrossRef] [Green Version] - Attaianese, C.; Monaco, M.D.; Tomasso, G. High Performance Digital Hysteresis Control for Single Source Cascaded Inverters. IEEE Trans. Ind. Inform.
**2013**, 9, 620–629. [Google Scholar] [CrossRef] - Nguyen-Van, T.; Abe, R.; Tanaka, K. Stability of FPGA Based Emulator for Half-bridge Inverters Operated in Stand-Alone and Grid-Connected Modes. IEEE Access
**2018**, 6, 3603–3610. [Google Scholar] [CrossRef] - Nguyen-Van, T.; Abe, R.; Tanaka, K. MPPT and SPPT Control for PV-Connected Inverters Using Digital Adaptive Hysteresis Current Control. Energies
**2018**, 11, 2075. [Google Scholar] [CrossRef] - Hayashi, T. Power System Growth and Use of New Technologies in Japan. IEEE Power Eng. Rev.
**2001**, 21, 12–14. [Google Scholar] [CrossRef] - Takagi, S. The Japanese equity market: Past and present. J. Bank. Finance
**1989**, 13, 537–570. [Google Scholar] [CrossRef] - Zare, F.; Ledwich, G. A hysteresis current control for single-phase multilevel voltage source inverters: PLD implementation. IEEE Trans. Power Electron.
**2002**, 17, 731–738. [Google Scholar] [CrossRef] [Green Version] - Kale, M.; Ozdemir, E. An adaptive hysteresis band current controller for shunt active power filter. Electr. Power Syst. Res.
**2005**, 73, 113–119. [Google Scholar] [CrossRef] - Nguyen-Van, T.; Abe, R.; Tanaka, K. A Digital Hysteresis Current Control for Half-Bridge Inverters with Constrained Switching Frequency. Energies
**2017**, 10, 1610. [Google Scholar] [CrossRef] - Vázquez, G.; Rodriguez, P.; Ordoñez, R.; Kerekes, T.; Teodorescu, R. Adaptive hysteresis band current control for transformerless single-phase PV inverters. In Proceedings of the 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 173–177. [Google Scholar]
- Buso, S.; Caldognetto, T. A Nonlinear Wide-Bandwidth Digital Current Controller for DC-DC and DC-AC Converters. IEEE Trans. Ind. Electron.
**2015**, 62, 7687–7695. [Google Scholar] [CrossRef] - Nguyen-Van, T.; Abe, R. An indirect hysteresis voltage digital control for half bridge inverters. In Proceedings of the IEEE 5th Global Conference on Consumer Electronics, Kyoto, Japan, 11–14 October 2016; pp. 1–4. [Google Scholar]
- Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A.V. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Trans. Ind. Electron.
**2006**, 53, 1398–1409. [Google Scholar] [CrossRef] [Green Version] - Vahedi, H.; Al-Haddad, K.; Kanaan, H.Y. A new voltage balancing controller applied on 7-level PUC inverter. In Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society (IECON), Dallas, TX, USA, 29 October–1 November 2014; pp. 5082–5087. [Google Scholar]
- Park, J.W.; Kim, J.M.; Park, S.H.; Kang, K.L.; Jung, T.U. DC voltage balancing control of half-bridge PWM inverter for linear compressor. In Proceedings of the 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Aalborg, Denmark, 25–28 June 2012; pp. 598–602. [Google Scholar]
- Han, B.-M. A Half-Bridge Voltage Balancer with New Controller for Bipolar DC Distribution Systems. Energies
**2016**, 9, 182. [Google Scholar] [CrossRef] - Zhang, X.; Gong, C. Dual-Buck Half-Bridge Voltage Balancer. IEEE Trans. Ind. Electron.
**2013**, 60, 3157–3164. [Google Scholar] [CrossRef] - Borrega, M.; Marroyo, L.; González, R.; Balda, J.; Agorreta, J.L. Modeling and Control of a Master-Slave PV Inverter with N-Paralleled Inverters and Three-Phase Three-Limb Inductors. IEEE Trans. Power Electron.
**2013**, 28, 2842–2855. [Google Scholar] [CrossRef]

**Figure 10.**Responses of the grid-connected inverter when the transferred power changes from 100 W to 150 W.

**Figure 11.**Responses of the grid-connected inverter when the grid voltage changes its effective value from 90 V to 100 V.

**Figure 12.**Responses of the inverter in master mode when the DC voltages are maintained at desired value.

**Figure 14.**Voltage and current responses of the inverters in a back-to-back system. Abbreviations are: Stand-alone (SA), grid-connected (GC).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Nguyen-Van, T.; Abe, R.; Tanaka, K.
Digital Adaptive Hysteresis Current Control for Multi-Functional Inverters. *Energies* **2018**, *11*, 2422.
https://doi.org/10.3390/en11092422

**AMA Style**

Nguyen-Van T, Abe R, Tanaka K.
Digital Adaptive Hysteresis Current Control for Multi-Functional Inverters. *Energies*. 2018; 11(9):2422.
https://doi.org/10.3390/en11092422

**Chicago/Turabian Style**

Nguyen-Van, Triet, Rikiya Abe, and Kenji Tanaka.
2018. "Digital Adaptive Hysteresis Current Control for Multi-Functional Inverters" *Energies* 11, no. 9: 2422.
https://doi.org/10.3390/en11092422