Economic Analysis of Diesel-Fuel Replacement by Crude Palm Oil in Indonesian Power Plants
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McKinsey & Company, The Archipelago Economy: Unleashing Indonesia’s Potential. Available online: http://www.mckinsey.com/insights/asia-pacific/the_archipelago_economy (accessed on 2 September 2017).
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Sharma, S.C.; Hazrat, M.A. Prospect of biofuels as an alternative transport fuel in Australia. Renew. Sustain. Energy Rev. 2015, 43, 331–351. [Google Scholar] [CrossRef]
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Omri, A.; Bhuiya, M.M.K.; Hazrat, M.A. Modelling of renewable energy economy in Australia. Energy Procedia 2014, 61, 1902–1906. [Google Scholar] [CrossRef]
- Gresshoff, P.M.; Hayashi, S.; Biswas, B.; Mirzaei, S.; Indrasumunar, A.; Reid, D.; Samuel, S.; Tollenaere, A.; van Hameren, B.; Hastwell, A. The value of biodiversity in legume symbiotic nitrogen fixation and nodulation for biofuel and food production. J. Plant Physiol. 2015, 172, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Bhuiya, M.M.K.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Azad, A.K.; Mofijur, M. Optimisation of Oil Extraction Process from Australian Native Beauty Leaf Seed (Calophyllum Inophyllum). Energy Procedia 2015, 75, 56–61. [Google Scholar] [CrossRef]
- Murphy, F.; McDonnell, K. Investigation of the potential impact of the Paris Agreement on national mitigation policies and the risk of carbon leakage; an analysis of the Irish bioenergy industry. Energy Policy 2017, 104, 80–88. [Google Scholar] [CrossRef]
- Begum, S.; Kumaran, P.; Jayakumar, M. Use of oil palm waste as a renewable energy source and its impact on reduction of air pollution in context of Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2013, 16, 012026. [Google Scholar] [CrossRef]
- Pleanjai, S.; Gheewala, S.H.; Garivait, S. Environmental Evaluation of Biodiesel Production from Palm Oil in a Life Cycle Perspective. Asian J. Energy Environ. 2007, 8, 15–32. [Google Scholar]
- Bradna, J.; Malaťák, J. By-products from methyl ester oil production and their thermal-emission properties. Res. Agric. Eng. 2008, 54, 9–21. [Google Scholar] [CrossRef]
- Song, Y.; Penmatsa, V.; Wang, C.L. Modeling and Simulation of Enzymatic Biofuel Cells with Three-Dimensional Microelectrodes. Energies 2014, 7, 4694–4709. [Google Scholar] [CrossRef]
- Liu, X.; He, H.; Wang, Y.; Zhu, S.; Piao, X. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 2008, 87, 216–221. [Google Scholar] [CrossRef]
- Agarwal, D.; Agarwal, A.K. Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Appl. Therm. Eng. 2007, 27, 2314–2323. [Google Scholar] [CrossRef]
- Dorado, M.P.; Ballesteros, E.; Arnal, J.M.; Gómez, J.; López, F.J. Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil. Fuel 2003, 82, 1311–1315. [Google Scholar] [CrossRef]
- Demirbas, A. Importance of biodiesel as transportation fuel. Energy Policy 2007, 35, 4661–4670. [Google Scholar] [CrossRef]
- Hönig, V.; Hromádko, J. Possibilities of using vegetable oil to power diesel engines as well as their impact on engine oil. Agron. Res. 2014, 12, 323–332. [Google Scholar]
- EN 590+A1. Automotive Fuels-Diesel-Requirements and Test Methods; Czech Office for Standards, Metorology and Testing; Deutsches Institut fur Normung E.V. (DIN): Berlin, Germany, 2014; 16p. [Google Scholar]
- Canakci, M.; Van Gerpen, J. Biodiesel production from oils and fats with high free fatty acids. Trans. Am. Soc. Agric. Eng. 2001, 44, 1429–1436. [Google Scholar] [CrossRef]
- Ramírez-Verduzco, L.F.; Rodríguez-Rodríguez, J.E.; del Jaramillo-Jacob, A.R. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 2012, 91, 102–111. [Google Scholar] [CrossRef]
- Barnwal, B.K.; Sharma, M.P. Prospects of biodiesel production from vegetable oils in India. Renew. Sustain. Energy Rev. 2005, 9, 363–378. [Google Scholar] [CrossRef]
- Nasution, M.A.; Herawan, T.; Rivani, M. Analysis of Palm Biomass as Electricity from Palm Oil Mills in North Sumatera. Energy Procedia 2014, 47, 166–172. [Google Scholar] [CrossRef]
- Ng, Y.G.; Shamsul Bahri, M.T.; Irwan Sayah, M.Y.; Mori, I.; Hasim, Z. Ergonomics Observation: Harvesting Tasks at Oil Palm Plantation. J. Occup. Health 2013, 55, 405–414. [Google Scholar] [CrossRef] [PubMed]
- The Jakarta Post, PLN Operates First Power Plant Fired by Crude Palm Oil. Available online: http://www.thejakartapost.com/news/2008/10/30/pln-operates-first-power-plant-fired-crude-palm-oil.html#sthash.fMP8j0Up.dpuf (accessed on 7 September 2017).
- Machek, O.; Hnilica, J. Evaluating the Impact of Family Presence in Ownership and Management on Financial Performance of Firms using Mathed-Pair Investigation. Politicka Ekonomie 2015, 63, 347–362. [Google Scholar] [CrossRef]
- GlobalPetrolPrices.com. Available online: http://www.globalpetrolprices.com/Indonesia/diesel_prices/ (accessed on 20 February 2018).
- Indonesia-Investments. Subsidized Fuel Prices Indonesia Raised due to Oil Price & Rupiah. Available online: http://www.indonesia-investments.com/news/todays-headlines/subsidized-fuel-prices-indonesia- raised-due-to-oil-price-rupiah/item5429 (accessed on 2 April 2017).
- Parry, I.W.H.; Walls, M.; Harrington, W. Automobile Externalities And Policies. J. Econ. Lit. 2007, 45, 373–399. [Google Scholar] [CrossRef]
- Knothe, G. Biodiesel derived from a model oil enriched in palmitoleic acid, macadamia nut oil. Energy Fuels 2010, 24, 2098–2103. [Google Scholar] [CrossRef]
- Azad, A.K. Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel 2017. Energies 2017, 10, 1689. [Google Scholar] [CrossRef]
- Rasid, N.S.A.; Syed-Hassan, S.S.A.; Kadir, S.A.S.A.; Asadullah, M. Life Cycle Assessment to Evaluate The Green House Gas Emission from Oil Palm Bio-Oil Based Power Plant. Korean J. Chem. Eng. 2013, 30, 1277–1283. [Google Scholar] [CrossRef]
- Tsay, R.S. Analysis of Financial Time Series, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; p. 712. ISBN 9780470414354. [Google Scholar] [CrossRef]
- Aptech Systems, Inc. Available online: https://store.aptech.com/gauss-platform-category.html (accessed on 5 October 2017).
- Fred Economic Data, Economic Research. Available online: https://fred.stlouisfed.org (accessed on 5 September 2017).
- KURZYCZ. Available online: http://www.kurzy.cz/kurzy-men/nejlepsi-kurzy/IDR-indoneska-rupie/ (accessed on 7 September 2017).
- Aussie Mandarins. Available online: http://www.aussiemandarins.com.au/industry (accessed on 16 April 2016).
- Machek, O.; Hnilica, J. Copreneurship and its Impact on Financial Characteristics of Companies. Ekonomicky Casopis 2015, 63, 152–166. [Google Scholar]
- Bhuiya, M.M.K.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Azad, A.K. Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 Selection of feedstocks, oil extraction techniques and conversion technologies. Renew. Sustain. Energy Rev. 2016, 55, 1109–1128. [Google Scholar] [CrossRef]
- Demirbas, A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energy Combust. Sci. 2005, 31, 466–487. [Google Scholar] [CrossRef]
- Schwartz, R.; Byrne, J.; Colaninno, A. Volatility Risk and Uncertainty in Financial Markets; Springer: New York, NY, USA, 2011; p. 137. ISBN 978-1-4419-1474-3. [Google Scholar]
- Syafii, R.N. Analisis Kontingensi Sistem Tenaga Listrik dengan Metode Bounding. Jurnal Rekayasa Elektrika 2012, 10, 92–97. Available online: http://www.jurnal.unsyiah.ac.id/JRE/article/view/139/132 (accessed on 7 July 2017). [CrossRef]
- Wang, R.; Sun, L.; Xie, X.; Ma, L.; Liu, Z.; Liu, X.; Ji, N.; Xie, G. Biodiesel production from Stauntonia chinensis seed oil (waste from food processing): Heterogeneous catalysis by modified calcite, biodiesel purification, and fuel properties. Ind. Crops Prod. 2014, 62, 8–13. [Google Scholar] [CrossRef]
- Asianpower. Available online: http://asian-power.com/power-utility/commentary/how-strong-regulatory-push-can-jumpstart-indonesias-biomass-sector#sthash.98Yiabl8.dpuf (accessed on 19 April 2017).
- Aghamohammadi, N.; Reginald, S.S.; Shamiri, A.; Zinatizadeh, A.A.; Wong, L.P.; Sulaiman, N.M.B.N. An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak. Sustainabillity 2016, 8, 416. [Google Scholar] [CrossRef]
- Bazmi, A.A.; Zahedi, G.; Hashim, H. Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation. Renew. Sustain. Energy Rev. 2011, 15, 574–583. [Google Scholar] [CrossRef]
- Gillespie, P. Participation and Power in Indonesian Oil Palm Plantations. Asia Pac. Viewp. 2012, 53, 254–271. [Google Scholar] [CrossRef]
- Smutka, L.; Hinke, J.; Pulkrabek, J. Characteristics of Sugar Production in Asian Region. Listy Cukrovarnicke a Reparske 2017, 133, 360–365. [Google Scholar]
- Benesova, I.; Maitah, M.; Smutka, L.; Tomsik, K.; Ishchukova, N. Perspectives of the Russian agricultural exports in terms of comparative advantage. Aric. Econ.—Zemedelska Ekonomika 2017, 63, 318–330. [Google Scholar] [CrossRef]
- Milanovic, V.; Smutka, L. South Asian Countries in the Global Sugar Market: A Critical Assessment. Sugar Tech. 2016, 18, 647–658. [Google Scholar] [CrossRef]
- Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Available online: http://www.giz.de/expertise/html/4282.html (accessed on 5 September 2017).
- Warr, P. The Transmission of Import Prices to Domestic Prices: An Application to Indonesia. Appl. Econ. Lett. 2008, 15, 499–503. [Google Scholar] [CrossRef]
- Rieka, R.; Agus, S.; Hendaru, P. Bank Indonesia Raises Key Rate after Fuel-Price Increase. Available online: http://www.bloomberg.com/news/articles/2014-11-17/indonesia-s-widodo-increases-subsidized- gasoline-diesel-prices (accessed on 2 April 2017).
Coefficient | Std. Error | Z | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Const | 0.254807 | 0.710035 | 0.3589 | 0.71970 | |||||
phi_1 | 0.142828 | 0.14087 | 1.0139 | 0.31063 | |||||
theta_1 | 0.340985 | 0.128735 | 2.6487 | 0.00808 | *** | ||||
Mean dependent var | 0.251909 | S.D. dependent var | 6.801058 | ||||||
Mean of innovations | 0.000911 | S.D. of innovations | 6.086578 | ||||||
Log-likelihood | −577.3991 | Akaike criterion | 1162.798 | ||||||
Schwarz criterion | 1175.548 | Hannan-Quinn | 1167.968 |
CPO | WTI |
---|---|
3.81 | 2.84 |
Diesel | Crude Palm Oil | |
---|---|---|
Price (USD/l | 0.99 | 0.86 |
Annual consumption (l per year) | 1,397,530 | 1,533,211 |
Fixed cost (USD) | 280,000 | |
Total electricity produced (kWh per year) | 5,913,000.00 | |
Fuel cost (USD per year) | 1,383,554.7 | 1,318,561.46 |
Fuel cost per 1 kwh (USD/kWh) | 0.23 | 0.22 |
Fuel cost savings/kWh (USD/kWh) | 0.01 | |
Annual savings on fuel (USD per year) | 64,993.24 | |
Payback period (years) | 4.3 | |
Return of investment (%) | 23.21 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Procházka, P.; Hönig, V. Economic Analysis of Diesel-Fuel Replacement by Crude Palm Oil in Indonesian Power Plants. Energies 2018, 11, 504. https://doi.org/10.3390/en11030504
Procházka P, Hönig V. Economic Analysis of Diesel-Fuel Replacement by Crude Palm Oil in Indonesian Power Plants. Energies. 2018; 11(3):504. https://doi.org/10.3390/en11030504
Chicago/Turabian StyleProcházka, Petr, and Vladimír Hönig. 2018. "Economic Analysis of Diesel-Fuel Replacement by Crude Palm Oil in Indonesian Power Plants" Energies 11, no. 3: 504. https://doi.org/10.3390/en11030504
APA StyleProcházka, P., & Hönig, V. (2018). Economic Analysis of Diesel-Fuel Replacement by Crude Palm Oil in Indonesian Power Plants. Energies, 11(3), 504. https://doi.org/10.3390/en11030504