Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa
Abstract
1. Introduction
2. Methodology
3. Results
3.1. Solar Irradiation Model
3.2. PV Energy Model (Optimal Azimuth)
3.3. Effect of Non-Optimal Azimuth
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
BIPV | Building-Integrated Photovoltaic |
PVGIS | Photovoltaic Geographic Information System |
JRC | Joint Research Centre (European Commission) |
CM-SAF | Satellite Application Facility on Climate Monitoring |
MAPE | Mean Absolute Percent Error |
NRMSE | Normalized Root Mean Square Error |
Appendix A
Location | Country | [] | [] | h [m] | [C] | [kWh/m2] | [%] | |
---|---|---|---|---|---|---|---|---|
PVGIS | Computed | |||||||
Edinburgh | Scotland | 55.94 | −3.30 | 44 | 9.0 | 1140 | 1208 | 6.0 |
Vilnius | Lithuania | 54.64 | 25.27 | 186 | 7.1 | 1140 | 1142 | 0.2 |
Warsaw | Poland | 52.20 | 21.00 | 110 | 8.9 | 1240 | 1270 | 2.4 |
London | England | 51.48 | 0.00 | 28 | 10.2 | 1320 | 1351 | 2.4 |
Kiev | Ukraine | 50.45 | 30.46 | 165 | 8.9 | 1340 | 1306 | −2.6 |
Prague | Czech Republic | 50.12 | 14.62 | 280 | 9.3 | 1270 | 1350 | 6.3 |
Vienna | Austria | 48.17 | 16.39 | 223 | 11.0 | 1410 | 1476 | 4.7 |
Budapest | Hungary | 47.47 | 19.15 | 123 | 11.5 | 1510 | 1505 | −0.3 |
Vaduz | Liechtenstein | 47.14 | 9.50 | 454 | 10.3 | 1420 | 1477 | 4.0 |
Bolzano | Italy | 46.47 | 11.32 | 238 | 14.1 | 1740 | 1725 | −0.8 |
Zagreb | Croatia | 45.81 | 15.97 | 127 | 11.7 | 1500 | 1539 | 2.6 |
Belgrade | Serbia | 44.80 | 20.38 | 80 | 13.0 | 1590 | 1633 | 2.7 |
Bucharest | Romania | 44.43 | 26.00 | 90 | 11.9 | 1640 | 1563 | −4.7 |
Sofia | Bulgaria | 42.63 | 23.41 | 575 | 10.3 | 1640 | 1557 | −5.1 |
Rome | Italy | 41.97 | 12.53 | 54 | 16.4 | 1940 | 1914 | −1.3 |
Tirana | Albania | 41.36 | 19.80 | 111 | 16.4 | 1890 | 1923 | 1.8 |
Yerevan | Armenia | 40.16 | 44.52 | 1011 | 13.6 | 1950 | 1844 | −5.4 |
Lisbon | Portugal | 38.75 | −9.15 | 89 | 16.3 | 2170 | 1919 | −11.6 |
Seville | Spain | 37.38 | −5.95 | 14 | 18.4 | 2180 | 2076 | −4.8 |
Tunisi | Tunisia | 36.74 | 10.24 | 16 | 18.6 | 2090 | 2091 | 0.0 |
Gibraltar | Gibraltar | 36.15 | −5.35 | 4 | 17.7 | 2050 | 2017 | −1.6 |
Rabat | Morocco | 33.96 | −6.87 | 75 | 17.5 | 2200 | 2011 | −8.6 |
Cairo | Egypt | 29.74 | 31.38 | 96 | 22.7 | 2390 | 2368 | −0.9 |
Aswan | Egypt | 23.31 | 32.33 | 240 | 27.4 | 2560 | 2583 | 0.9 |
Mopti | Mali | 15.27 | −4.17 | 261 | 29.8 | 2270 | 2420 | 6.6 |
Kaolack | Senegal | 13.66 | −15.69 | 0 | 28.6 | 2280 | 2278 | −0.1 |
Ouagadougou | Burkina Faso | 12.05 | −1.64 | 319 | 29.0 | 2250 | 2273 | 1.0 |
Djibouti | Republic of Djibouti | 12.05 | 42.74 | 942 | 30.6 | 2370 | 2400 | 1.3 |
Dire Dawa | Ethiopia | 10.45 | 41.73 | 677 | 28.9 | 2490 | 2258 | −9.3 |
Addis Ababa | Ethiopia | 8.84 | 38.11 | 2379 | 19.0 | 2140 | 2331 | 8.9 |
Accra | Ghana | 5.63 | 0.00 | 9 | 27.1 | 2140 | 1985 | −7.2 |
Bangui | Central African Republic | 4.02 | 18.48 | 376 | 25.5 | 2080 | 1997 | −4.0 |
Douala | Cameroon | 4.02 | 10.45 | 327 | 25.3 | 1880 | 1992 | 5.9 |
Kisangani | DR Congo | 0.80 | 24.91 | 445 | 25.7 | 1850 | 1923 | 3.9 |
Mombasa | Kenya | −4.02 | 39.38 | 219 | 26.7 | 2130 | 1967 | −7.6 |
Brazzaville | Republic of the Congo | −4.02 | 15.27 | 399 | 24.5 | 1850 | 2007 | 8.5 |
Huambo | Angola | −13.66 | 15.69 | 1562 | 21.2 | 2260 | 2288 | 1.3 |
Harare | Zimbabwe | −18.48 | 30.42 | 1281 | 20.8 | 2340 | 2285 | −2.3 |
Maputo | Mozambique | −26.52 | 32.24 | 48 | 21.9 | 1990 | 2260 | 13.6 |
Johannesburg | South Africa | −26.52 | 28.66 | 1602 | 16.1 | 2250 | 2149 | −4.5 |
Location | Country | [] | [] | h [m] | [C] | [kWh/m2] | [%] | |
---|---|---|---|---|---|---|---|---|
PVGIS | Computed | |||||||
St. Petersburg | Russia | 59.98 | 30.46 | 18 | 5.4 | 1070 | 941 | −12.1 |
Moscow | Russia | 55.65 | 37.63 | 170 | 6.0 | 1160 | 1070 | −7.7 |
Berlin | Germany | 52.54 | 13.52 | 55 | 9.7 | 1250 | 1307 | 4.6 |
The Hague | Netherlands | 52.06 | 4.36 | 0 | 10.3 | 1320 | 1346 | 2.0 |
Brussels | Belgium | 50.86 | 4.37 | 54 | 10.4 | 1250 | 1377 | 10.2 |
Frankfurt | Germany | 50.13 | 8.70 | 133 | 10.5 | 1280 | 1404 | 9.7 |
Paris | France | 48.91 | 2.37 | 38 | 11.4 | 1370 | 1469 | 7.2 |
Stuttgart | Germany | 48.80 | 9.20 | 242 | 10.5 | 1320 | 1438 | 8.9 |
Bratislava | Slovakia | 48.11 | 17.06 | 134 | 11.2 | 1460 | 1478 | 1.2 |
Bern | Switzerland | 46.96 | 7.43 | 571 | 8.7 | 1440 | 1407 | −2.3 |
Ljubljana | Slovenia | 46.08 | 14.48 | 311 | 11.5 | 1460 | 1547 | 6.0 |
Turin | Italy | 45.11 | 7.73 | 210 | 12.9 | 1720 | 1641 | −4.6 |
Bordeaux | France | 44.79 | −0.53 | 4 | 13.5 | 1600 | 1660 | 3.7 |
Sarajevo | Bosnia-Herzegovina | 43.83 | 18.34 | 514 | 10.3 | 1500 | 1532 | 2.1 |
Podgorica | Montenegro | 42.42 | 19.26 | 48 | 17.3 | 1880 | 1991 | 5.9 |
Istanbul | Turkey | 41.07 | 28.77 | 90 | 14.9 | 1800 | 1803 | 0.2 |
Madrid | Spain | 40.35 | −3.73 | 615 | 14.5 | 2040 | 1851 | −9.3 |
Athens | Greece | 37.98 | 23.70 | 30 | 18.4 | 2120 | 2080 | −1.9 |
Syracuse | Italy | 37.20 | 14.95 | 348 | 16.3 | 1990 | 1958 | −1.6 |
Algiers | Algeria | 36.70 | 3.10 | 12 | 19.1 | 2140 | 2132 | −0.4 |
Nicosia | Cyprus | 35.14 | 33.38 | 171 | 20.3 | 2240 | 2245 | 0.2 |
Tripoli | Libya | 32.76 | 13.17 | 51 | 21.1 | 2280 | 2273 | −0.3 |
Nouakchott | Mauritania | 18.48 | −15.21 | 12 | 28.2 | 2310 | 2437 | 5.5 |
Karthoum | Sudan | 15.27 | 32.50 | 379 | 30.3 | 2350 | 2456 | 4.5 |
Asmara | Eritrea | 15.27 | 39.17 | 1337 | 25.4 | 2250 | 2405 | 6.9 |
Bafatá | Guinea Bissau | 12.05 | −14.79 | 7 | 28.0 | 2230 | 2205 | −1.1 |
Kano | Nigeria | 12.05 | 8.22 | 514 | 27.2 | 2270 | 2255 | −0.7 |
Kaduna | Nigeria | 10.45 | 7.36 | 589 | 26.8 | 2160 | 2208 | 2.2 |
Moundou | Chad | 8.84 | 15.41 | 420 | 27.8 | 2230 | 2149 | −3.6 |
Bouaflé | Côte d’Ivoire | 7.23 | −5.68 | 185 | 26.5 | 2100 | 2056 | −2.1 |
Juba | South Sudan | 4.02 | 31.34 | 803 | 26.7 | 2180 | 2047 | −6.1 |
Kampala | Uganda | 0.80 | 32.95 | 1075 | 24.1 | 2110 | 2038 | −3.4 |
Ngoma | Rwanda | −2.41 | 29.73 | 1692 | 19.9 | 1970 | 2201 | 11.7 |
Tarangire N.P. | Tanzania | −4.02 | 36.16 | 1175 | 22.1 | 2090 | 2129 | 1.8 |
Mbeya | Tanzania | −8.84 | 33.24 | 1261 | 20.9 | 2260 | 2194 | −2.9 |
Lilongwe | Malawi | −13.66 | 33.85 | 1438 | 20.7 | 2180 | 2260 | 3.7 |
Lusaka | Zambia | −15.27 | 27.50 | 1030 | 21.4 | 2300 | 2238 | −2.7 |
Antananarivo | Madagascar | −18.48 | 47.32 | 1392 | 20.0 | 2170 | 2271 | 4.7 |
Windhoek | Namibia | −23.31 | 16.60 | 1794 | 21.5 | 2560 | 2437 | −4.8 |
Bloemfontein | South Africa | −29.74 | 25.85 | 1411 | 16.8 | 2430 | 2152 | −11.4 |
References
- IEA World Energy Outlook 2017. Available online: http://www.iea.org/weo/ (accessed on 14 June 2018).
- Kyoto Protocol to the United Nations Framework Convention on Climate Change; U.N. Doc FCCC/CP/1997/7/ Add.1, 37 I.L.M. 22. Kyoto, Japan, 1998. Available online: http://www.globaldialoguefoundation.org/files/ENV.2009-jun.unframeworkconventionclimate.pdf (accessed on 11 December 2018).
- Huld, T.; Gracia Amillo, A.M. Estimating PV Module Performance over Large Geographical Regions: The Role of Irradiance, Air Temperature, Wind Speed and Solar Spectrum. Energies 2015, 8, 5159–5181. [Google Scholar] [CrossRef]
- Directive 2009/28/EC of the European Parliament and of the Council. 2009. Available online: http://data.europa.eu/eli/dir/2009/28/oj (accessed on 11 December 2018).
- Proposal for a Directive COM 2016/767/F2 of the European Parliament and of the Council. 2016. Available online: https://ec.europa.eu/transparency/regdoc/rep/1/2016/EN/COM-2016-767-F2-EN-MAIN-PART-1.PDF (accessed on 11 December 2018).
- Martínez-Rubio, A.; Sanz-Adan, F.; Santamaría-Peña, J.; Martínez, A. Evaluating solar irradiance over facades in high building cities, based on LiDAR technology. Appl. Energy 2016, 183, 133–147. [Google Scholar] [CrossRef]
- Numbi, B.P.; Malinga, S.J. Optimal energy cost and economic analysis of a residential grid-interactive solar PV system-case of eThekwini municipality in South Africa. Appl. Energy 2017, 186, 28–45. [Google Scholar] [CrossRef]
- Micangeli, A.; Del Citto, R.; Santori, S.G.; Gambino, V.; Kiplagat, J.; Viganò, D.; Poli, D.; Fioriti, D.; Del Citto, R.; Kiva, I.N. Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya. Energies 2017, 10, 2041. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Solar PV in Africa: Costs and Markets. 2016. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_Solar_PV_Costs_Africa_2016.pdf (accessed on 11 December 2018).
- Quansah, D.A.; Adaramola, M.S.; Mensah, L.D. Solar Photovoltaics in sub-Saharan Africa—Addressing Barriers, Unlocking Potential. Energy Procedia 2016, 106, 97–110. [Google Scholar] [CrossRef]
- Rus-Casas, C.; Aguilar, J.D.; Rodrigo, P.; Almonacid, F.; Pérez-Higueras, P.J. Classification of methods for annual energy harvesting calculations of photovoltaic generators. Energy Convers. Manag. 2014, 78, 527–536. [Google Scholar] [CrossRef]
- Yousif, J.H.; Kazem, H.A.; Boland, J. Predictive models for photovoltaic electricity production in hot weather conditions. Energies 2017, 10, 971. [Google Scholar] [CrossRef]
- Dobos, A.P. PVWatts Version 5 Manual; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2014.
- Šúri, M.; Huld, T.A.; Dunlop, E.D. PV-GIS: A web-based solar radiation database for the calculation of PV potential in Europe. Int. J. Sustain. Energy 2005, 24, 55–67. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Global Atlas for Renewable Energy: Overview of Solar and Wind Maps. 2014. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2014/GA_Booklet_Web.pdf (accessed on 11 December 2018).
- SOLARGIS. Available online: https://solargis.info/ (accessed on 14 June 2018).
- Huld, T.; Müller, R.; Gambardella, A. A new solar radiation database for estimating PV performance in Europe and Africa. Sol. Energy 2012, 86, 1803–1815. [Google Scholar] [CrossRef]
- Besharat, F.; Dehghan, A.A.; Faghih, A.R. Empirical models for estimating global solar radiation: A review and case study. Renew. Sustain. Energy Rev. 2013, 21, 798–821. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, L.; Deng, S.; Xu, W.; Zhang, Y. A critical review of the models used to estimate solar radiation. Renew. Sustain. Energy Rev. 2017, 70, 314–329. [Google Scholar] [CrossRef]
- Erbs, D.G.; Klein, S.A.; Duffie, J.A. Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Sol. Energy 1982, 28, 293–302. [Google Scholar] [CrossRef]
- Noorian, A.M.; Moradi, I.; Kamali, G.A. Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces. Renew. Energy 2008, 33, 1406–1412. [Google Scholar] [CrossRef]
- Perez, R.; Ineichen, P.; Seals, R.; Michalsky, J.; Stewart, R. Modeling daylight availability and irradiance components from direct and global irradiance. Sol. Energy 1990, 44, 271–289. [Google Scholar] [CrossRef]
- Skoplaki, E.; Palyvos, J.A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 2009, 83, 614–624. [Google Scholar] [CrossRef]
- Bocca, A.; Chiavazzo, E.; Macii, A.; Asinari, P. Solar energy potential assessment: An overview and a fast modeling approach with application to Italy. Renew. Sustain. Energy Rev. 2015, 49, 291–296. [Google Scholar] [CrossRef]
- Bocca, A.; Bottaccioli, L.; Chiavazzo, E.; Fasano, M.; Macii, A.; Asinari, P. Estimating photovoltaic energy potential from a minimal set of randomly sampled data. Renew. Energy 2016, 97, 457–467. [Google Scholar] [CrossRef]
- Pfenninger, S.; Staffell, I. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 2016, 114, 1251–1265. [Google Scholar] [CrossRef]
- Pfenninger, S. Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability. Appl. Energy 2017, 197, 1–13. [Google Scholar] [CrossRef]
- Bergamasco, L.; Asinari, P. Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: Application to Piedmont Region (Italy). Sol. Energy 2011, 85, 1041–1055. [Google Scholar] [CrossRef]
- Bergamasco, L.; Asinari, P. Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: Further improvements by ortho-image analysis and application to Turin (Italy). Sol. Energy 2011, 85, 2741–2756. [Google Scholar] [CrossRef]
- ESRI World Imagery. Available online: https://www.arcgis.com/ (accessed on 14 June 2018).
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Aldobhani, A.A.M.S. Effect of Altitude and Tilt Angle on Solar Radiation in Tropical Regions. J. Sci. Technol. 2014, 19, 96–109. [Google Scholar]
- Wong, L.; Chow, W. Solar radiation model. Appl. Energy 2001, 69, 191–224. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic PV Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef]
- Bocca, A.; Bottaccioli, L.; Macii, A. Temperature Efficiency Analysis in Photovoltaics Using Basic Geodata: Application to Europe. In Proceedings of the 2018 International Symposium on Power Electronics, Automation and Motion (SPEEDAM), Amalfi, Italy, 20–22 June 2018; pp. 823–828. [Google Scholar]
- Martin, N.; Ruiz, J.M. Calculation of the PV modules angular losses under field conditions by means of an analytical model. Sol. Energy Mater. Sol. Cells 2001, 70, 25–38. [Google Scholar] [CrossRef]
- PVGIS, Online Tool. Available online: http://re.jrc.ec.europa.eu/pvgis (accessed on 14 June 2018).
- Šúri, M.; Huld, T.; Dunlop, E.; Ossenbrink, H. Potential of solar electricity generation in the European Union member states and candidate countries. Sol. Energy 2007, 81, 1295–1305. [Google Scholar] [CrossRef]
- Gracia Amillo, A.M.; Huld, T. Performance Comparison of Different Models for the Estimation of Global Irradiance on Inclined Surfaces. Validation of the Model Implemented in PVGIS; Technical Report EUR 26075 EN, JRC81902; 2013; ISBN 978-92-79-32507-6. Available online: https://publications.europa.eu/en/publication-detail/-/publication/4ef8c4e1-4397-4e27-8487-448786327f27 (accessed on 11 December 2018).
- Urraca, R.; Gracia-Amillo, A.M.; Koubli, E.; Huld, T.; Trentmann, J.; Riihelä, A.; Lindfors, A.V.; Palmer, D.; Gottschalg, R.; Antonanzas-Torres, F. Extensive validation of CM SAF surface radiation products over Europe. Remote Sens. Environ. 2017, 199, 171–186. [Google Scholar] [CrossRef]
- Berkeley Earth. Available online: http://berkeleyearth.lbl.gov (accessed on 12 September 2018).
- Zhang, J.; Hodge, B.M.; Florita, A.; Lu, S.; Hamann, H.F.; Banunarayanan, V. Metrics for Evaluating the Accuracy of Solar Power Forecasting. In Proceedings of the 3rd International Workshop on Integration of Solar Power into Power Systems, London, UK, 21–22 October 2013; pp. 1–19. [Google Scholar]
- Taylor, B.N.; Thompson, A. The International System of Units (SI)—NIST Special Publication 330; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2008.
- Šúri, M.; Cebecauer, T.; Skoczek, A. SolarGIS: Solar data and online applications for PV planning and performance assessment. In Proceedings of the 26th European Photovoltaics Solar Energy Conference, Hamburg, Germany, 5–9 September 2011. [Google Scholar]
- Global Solar Atlas: Accuracy. Available online: http://globalsolaratlas.info/knowledge-base/accuracy? (accessed on 12 September 2018).
- Khatib, T.; Mohamed, A.; Sopian, K.; Mahmoud, M. Solar energy prediction for Malaysia using artificial neural networks. Int. J. Photoenergy 2012, 2012, 419504. [Google Scholar] [CrossRef]
- Rumbayan, M.; Abudureyimu, A.; Nagasaka, K. Mapping of solar energy potential in Indonesia using artificial neural network and geographical information system. Renew. Sustain. Energy Rev. 2012, 16, 1437–1449. [Google Scholar] [CrossRef]
- Kuo, P.H.; Chen, H.C.; Huang, C.J. Solar Radiation Estimation Algorithm and Field Verification in Taiwan. Energies 2018, 11, 1374. [Google Scholar] [CrossRef]
- Williams, S.R.; Gottschalg, R. Accuracy of European Energy Modelling Approaches. In Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 4–8 September 2006; pp. 2452–2455. [Google Scholar]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 2017, 26, 3–12. [Google Scholar] [CrossRef]
- Aderemi, B.; Chowdhury, S.; Olwal, T.; Abu-Mahfouz, A. Techno-Economic Feasibility of Hybrid Solar Photovoltaic and Battery Energy Storage Power System for a Mobile Cellular Base Station in Soshanguve, South Africa. Energies 2018, 11, 1572. [Google Scholar] [CrossRef]
- Gueymard, C. Prediction and performance assessment of mean hourly global radiation. Sol. Energy 2000, 68, 285–303. [Google Scholar] [CrossRef]
- Rose, A.; Stoner, R.; Pérez-Arriaga, I. Prospects for grid-connected solar PV in Kenya: A systems approach. Appl. Energy 2016, 161, 583–590. [Google Scholar] [CrossRef]
- Mohan, G.; Kumar, U.; Pokhrel, M.K.; Martin, A. A novel solar thermal polygeneration system for sustainable production of cooling, clean water and domestic hot water in United Arab Emirates: Dynamic simulation and economic evaluation. Appl. Energy 2016, 167, 173–188. [Google Scholar] [CrossRef]
- Pintér, G.; Baranyai, N.H.; Wiliams, A.; Zsiborács, H. Study of Photovoltaics and LED Energy Efficiency: Case Study in Hungary. Energies 2018, 11, 790. [Google Scholar] [CrossRef]
- Zsiborács, H.; Baranyai, N.H.; Vincze, A.; Háber, I.; Pintér, G. Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe. Energies 2018, 11, 1445. [Google Scholar] [CrossRef]
- Morciano, M.; Fasano, M.; Secreto, M.; Jamolov, U.; Chiavazzo, E.; Asinari, P. Installation of a concentrated solar power system for the thermal needs of buildings or industrial processes. Energy Procedia 2016, 101, 956–963. [Google Scholar] [CrossRef][Green Version]
- Marucci, A.; Cappuccini, A. Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions. Appl. Energy 2016, 170, 362–376. [Google Scholar] [CrossRef]
- Morciano, M.; Fasano, M.; Salomov, U.; Ventola, L.; Chiavazzo, E.; Asinari, P. Efficient steam generation by inexpensive narrow gap evaporation device for solar applications. Sci. Rep. 2017, 7, 11970. [Google Scholar] [CrossRef]
Parameter | Average Value | Standard Deviation |
---|---|---|
[kWh·m] | −21.569 | ±2.073 |
[kWh·m] | 0.137 | ±0.031 |
[kWh·mC] | −0.421 | ±0.133 |
[kWh·mC] | 0.071 | ±0.003 |
[kWh·m] | 2119.345 | ±108.680 |
Parameter | Free-Standing | Building-Integrated |
---|---|---|
[C] | ||
[C] | ||
[−] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bocca, A.; Bergamasco, L.; Fasano, M.; Bottaccioli, L.; Chiavazzo, E.; Macii, A.; Asinari, P. Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa. Energies 2018, 11, 3477. https://doi.org/10.3390/en11123477
Bocca A, Bergamasco L, Fasano M, Bottaccioli L, Chiavazzo E, Macii A, Asinari P. Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa. Energies. 2018; 11(12):3477. https://doi.org/10.3390/en11123477
Chicago/Turabian StyleBocca, Alberto, Luca Bergamasco, Matteo Fasano, Lorenzo Bottaccioli, Eliodoro Chiavazzo, Alberto Macii, and Pietro Asinari. 2018. "Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa" Energies 11, no. 12: 3477. https://doi.org/10.3390/en11123477
APA StyleBocca, A., Bergamasco, L., Fasano, M., Bottaccioli, L., Chiavazzo, E., Macii, A., & Asinari, P. (2018). Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa. Energies, 11(12), 3477. https://doi.org/10.3390/en11123477