Silicon-Carbon Composite Electrode Materials Prepared by Pyrolysis of a Mixture of Manila Hemp, Silicon Powder, and Flake Artificial Graphite for Lithium Batteries
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Girskumar, G.; McCloskey, B.; Luntz, A.C.; Swanson, S.; Wilcke, W. Lithium-air battery; promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Bruce, P.G.; Freunberger, S.A.; Hardvick, L.J.; Trascon, J.-M. Li-O2 and Li-S batteries with high energy density. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Whittingam, M.S. The role of ternary phase in cathode reaction. J. Electrochem. Soc. 1972, 123, 315–320. [Google Scholar] [CrossRef]
- Chan, C.K.; Ruffo, R.; Hong, S.S.; Huggins, R.A.; Cu, Y. Structural and electrochemical study of the reaction of lithium with silicon nanowire. J. Power Sources 2009, 189, 34–39. [Google Scholar] [CrossRef]
- Benedek, R.; Thackeray, M.M. Lithium reaction with intermetallic compound electrodes. J. Power Sources 2002, 110, 406–411. [Google Scholar] [CrossRef]
- Besenhard, J.O.; Yand, J.; Winter, M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries. J. Power Sources 1997, 68, 87–90. [Google Scholar] [CrossRef]
- Wen, C.J.; Huggins, R.A. Chemical diffusion in intermediate phase in the lithium-silicon system. J. Solid State Chem. 1981, 37, 271–278. [Google Scholar] [CrossRef]
- Boukamp, B.A.; Lesh, G.C.; Huggins, R.A. All solid lithium electrodes with mixed conductor matrix. J. Electrochem. Soc. 1981, 128, 726–729. [Google Scholar] [CrossRef]
- Wolf, H.; Gerdes, P.G.; Willert-Porada, M. Carbon fiber-silicon-nanocomposite for lithium-ion battery anodes by microwave chemical vapor deposition. J. Power Sources 2009, 190, 157–161. [Google Scholar] [CrossRef]
- Wilson, A.M.; Dahn, J.R. Lithium insertion in carbon containing nanodispersed silicon. J. Electrochem. Soc. 1995, 142, 326–332. [Google Scholar] [CrossRef]
- Liu, Y.; Hanai, K.; Yang, J.; Imanishi, N.; Hirano, A.; Takeda, Y. Silicon/carbon composites as anode materials for lithium-ion batteries. Electrochem. Solid-State Lett. 2004, 7, A369–A372. [Google Scholar] [CrossRef]
- Magasink, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Du, Y.; Li, D.; Shen, D.; Yang, J.; Gou, Z.; Liu, H.K.; Elzatahry, A.A.; Zhao, D. Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anode with silicon nanoparticles embedded in a carbon frame work. Adv. Mater. 2014, 26, 6749–6755. [Google Scholar] [CrossRef] [PubMed]
- Si, Q.; Matsui, M.; Horiba, T.; Yamaamoto, O.; Takeda, Y.; Seki, N.; Imanishi, N. Carbon paper substrate for silicon-carbon composite anodes in lithium-ion batteries. J. Power Sources 2013, 241, 744–750. [Google Scholar] [CrossRef]
- Ren, J.; Wu, Q.-H.; Homg, G.; Zhang, W.J.; Wu, H.; Amine, K.; Yang, J.; Lee, S.T. Silicon-graphene composite anode for high-energy density lithium batteries. Energy Technol. 2013, 1, 77–84. [Google Scholar] [CrossRef]
- Xu, C.; Linggren, F.; Philyppe, B.; Gorgoi, M.; Bjorefors, F.; Edstrom, K.; Gustafsson, T. Improvement performance of the silicon anode for lithium-ion batteries: Understanding the surface modification mechanism of fluoroethylene carbonate as and effective electrolyte additive. Chem. Mater. 2015, 27, 2591–2599. [Google Scholar] [CrossRef]
- Li, H.; Huang, K.; Chen, L.; Wu, Z.; Liang, T. A high capacity nano-Si composite anode materials for lithium rechargeable batteries. Electrochem. Solid-State Lett. 1999, 2, 547–549. [Google Scholar] [CrossRef]
- Cho, J. Porous Si anode materials for lithium rechargeable batteries. J. Mater. Chem. 2010, 20, 4009–4014. [Google Scholar] [CrossRef]
- Dimov, N.; Kugini, S.; Yoshio, M. Mixed silicon-graphite composite as anode material for lithium ion batteries Inference of preparation conditions on the properties of the materials. J. Power Sources 2004, 136, 108–114. [Google Scholar] [CrossRef]
- Karullar, M.; Bachelm, R.; Kudla, B. Automotive assessment of carbon-silicon composite anodes and methods of fabrication. J. Power Sauces 2015, 273, 1194–1201. [Google Scholar] [CrossRef]
- Li, J.; Du, Z.; Ruther, R.E.; An, S.J.; David, L.A.; Hays, K.; Wood, M.; Phillip, N.D.; Sheng, Y.; Mao, C.; et al. Toward low cost, high energy density, and high-power density lithium ion batteries. JOM 2017, 60, 1484–1496. [Google Scholar] [CrossRef]
- Si, Q.; Kawakubo, M.; Matsui, M.; Horiba, M.; Yamamoto, O.; Takeda, Y.; Seki, N.; Imanishi, N. Silicon-carbon composite dispersed in a carbon paper substrate for solid polymer lithium-ion batteries. J. Power Sources 2014, 248, 1275–1280. [Google Scholar] [CrossRef]
- Chevrierm, V.L.; Zwanziger, J.W.; Dahn, J.K. First principles study of Li-Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations. J. Alloys Compd. 2010, 496, 25–36. [Google Scholar] [CrossRef]
- An, S.J.; Li, J.; Daniel, C.; Meyer, H., III; Trask, S.E.; Polzin, B.J.; Wood, D.L., III. Electrolyte volume effects on electrochemical performance and solid electrolyte interface in Si-graphite/NMC lithium-ion porch cell. ACS Appl. Mater. Interfaces 2017, 9, 18799–18808. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, Q.; Mori, D.; Takeda, Y.; Yamamoto, O.; Imanishi, N. Silicon-Carbon Composite Electrode Materials Prepared by Pyrolysis of a Mixture of Manila Hemp, Silicon Powder, and Flake Artificial Graphite for Lithium Batteries. Energies 2017, 10, 1803. https://doi.org/10.3390/en10111803
Si Q, Mori D, Takeda Y, Yamamoto O, Imanishi N. Silicon-Carbon Composite Electrode Materials Prepared by Pyrolysis of a Mixture of Manila Hemp, Silicon Powder, and Flake Artificial Graphite for Lithium Batteries. Energies. 2017; 10(11):1803. https://doi.org/10.3390/en10111803
Chicago/Turabian StyleSi, Qin, Daisuke Mori, Yasuo Takeda, Osamu Yamamoto, and Nobuyuki Imanishi. 2017. "Silicon-Carbon Composite Electrode Materials Prepared by Pyrolysis of a Mixture of Manila Hemp, Silicon Powder, and Flake Artificial Graphite for Lithium Batteries" Energies 10, no. 11: 1803. https://doi.org/10.3390/en10111803
APA StyleSi, Q., Mori, D., Takeda, Y., Yamamoto, O., & Imanishi, N. (2017). Silicon-Carbon Composite Electrode Materials Prepared by Pyrolysis of a Mixture of Manila Hemp, Silicon Powder, and Flake Artificial Graphite for Lithium Batteries. Energies, 10(11), 1803. https://doi.org/10.3390/en10111803