Percutaneous Radiofrequency Ablation of Thyroid Carcinomas Ineligible for Surgery, in the Elderly
Abstract
:1. Introduction
2. Case Description
2.1. Case 1
2.2. Case 2
2.3. Technical Aspects of RFA Procedure
2.4. Follow-Up and Results
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruneton, J.N.; Balu-Maestro, C.; Marcy, P.Y.; Melia, P.; Mourou, M.Y. Very high frequency (13 MHz) ultrasonographic examination of the normal neck: Detection of normal lymph nodes and thyroid nodules. J. Ultrasound Med. 1994, 13, 87–90. [Google Scholar] [CrossRef]
- Kim, E.K.; Park, C.S.; Chung, W.Y.; Oh, K.K.; Kim, D.I.; Lee, J.T.; Yoo, H.S. New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. Am. J. Roentgenol. 2002, 178, 687–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russ, G.; Bonnema, S.J.; Erdogan, M.F.; Durante, C.; Ngu, R.; Leenhardt, L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur. Thyroid J. 2017, 6, 225–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, D.; Sharma, R.; Pachori, G.; Bayla, T. Evaluation of Thyroid Lesions by Fine Needle Aspiration Cytology According to Bethesda System. Indian J. Otolaryngol. Head Neck Surg. 2023, 75, 457–462. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, E.J.; Chung, S.R.; Na, D.G.; Ahn, H.S.; Chung, J.; Lee, J.Y.; Park, J.S.; Yoo, R.E.; Baek, J.H.; Baek, S.M.; et al. 2021 Korean Thyroid Imaging Reporting and Data System and Imaging-Based Management of Thyroid Nodules: Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2021, 22, 2094–2123. [Google Scholar] [CrossRef]
- Ghai, S.; O’Brien, C.; Goldstein, D.P.; Sawka, A.M.; Canadian Thyroid Cancer Active Surveillance Study Group. Ultrasound in active surveillance for low-risk papillary thyroid cancer: Imaging considerations in case selection and disease surveillance. Insights Imaging 2021, 12, 130. [Google Scholar] [CrossRef]
- Cho, S.J.; Suh, C.H.; Baek, J.H.; Chung, S.R.; Choi, Y.J.; Chung, K.W.; Shong, Y.K.; Lee, J.H. Active Surveillance for Small Papillary Thyroid Cancer: A Systematic Review and Meta-Analysis. Thyroid 2019, 29, 1399–1408. [Google Scholar] [CrossRef]
- Marcy, P.Y.; Russ, G.; Saba, L.; Sanglier, J.; Ghanassia, E.; Sharara, H.; Thariat, J.; Morvan, J.B.; Bizeau, A. Opinion: Leading position of ultrasound in decision algorithm for small papillary thyroid carcinoma. Insights Imaging 2022, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Miyauchi, A.; Kihara, M.; Higashiyama, T.; Kobayashi, K.; Miya, A. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid 2014, 24, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Hjermstad, M.J.; Fayers, P.M.; Haugen, D.F.; Caraceni, A.; Hanks, G.W.; Loge, J.H.; Fainsinger, R.; Aass, N.; Kaasa, S.; European Palliative Care Research Collaborative (EPCRC). Studies comparing Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales for assessment of pain intensity in adults: A systematic literature review. J. Pain Symptom Manag. 2011, 41, 1073–1093. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.C.; Tai, Y.F.; Chen, M.H.; Luo, S.D.; Huang, F.; Chen, W.C.; Chiang, P.L.; Chen, H.L.; Chen, M.H.; Baek, J.H. Ultrasound-Guided Moving Shot Radiofrequency Ablation of Benign Soft Tissue Neoplasm. Medicina 2021, 57, 830. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wu, T.; Yao, Z.; Zheng, B.; Tan, L.; Tong, G.; Lian, Y.; Baek, J.H.; Ren, J. Continuous, Large-Volume Hydrodissection to Protect Delicate Structures around the Thyroid throughout the Radiofrequency Ablation Procedure. Eur. Thyroid J. 2021, 10, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Na, D.G.; Noh, B.J. US features of normal parathyroid glands: A comparison with metastatic lymph nodes in thyroid cancer. Ultrasonography 2023, 42, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Na, D.G.; Joo, L.; Lee, J.Y.; Ha, E.J.; Kim, J.H.; Jung, S.L.; Baek, J.H. Standardized Imaging and Reporting for Thyroid Ultrasound: Korean Society of Thyroid Radiology Consensus Statement and Recommendation. Korean J. Radiol. 2023, 24, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Furmanchuk, A.W.; Roussak, N.; Ruchti, C. Occult thyroid carcinomas in the region of Minsk, Belarus. An autopsy study of 215 patients. Histopathology 1993, 23, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Pacini, F.; Vorontsova, T.; Demidchik, E.P.; Molinaro, E.; Agate, L.; Romei, C.; Shavrova, E.; Cherstvoy, E.D.; Ivashkevitch, Y.; Kuchinskaya, E.; et al. Post-Chernobyl thyroid carcinoma in Belarus children and adolescents: Comparison with naturally occurring thyroid carcinoma in Italy and France. J. Clin. Endocrinol. Metab. 1997, 82, 3563–3569. [Google Scholar] [CrossRef]
- Robenshtok, E.; Neeman, B.; Reches, L.; Ritter, A.; Bachar, G.; Kaminer, K.; Shimon, I.; Mizrachi, A. Adverse Histological Features of Differentiated Thyroid Cancer Are Commonly Found in Autopsy Studies: Implications for Treatment Guidelines. Thyroid 2022, 32, 37–45. [Google Scholar] [CrossRef]
- Sawka, A.M.; Ghai, S.; Rotstein, L.; Irish, J.C.; Pasternak, J.D.; Gullane, P.J.; Monteiro, E.; Gooden, E.; Brown, D.H.; Eskander, A.; et al. A Quantitative Analysis Examining Patients’ Choice of Active Surveillance or Surgery for Managing Low-Risk Papillary Thyroid Cancer. Thyroid 2022, 32, 255–262. [Google Scholar] [CrossRef]
- Cho, S.J.; Baek, S.M.; Lim, H.K.; Lee, K.D.; Son, J.M.; Baek, J.H. Long-Term Follow-Up Results of Ultrasound-Guided Radiofrequency Ablation for Low-Risk Papillary Thyroid Microcarcinoma: More Than 5-Year Follow-Up for 84 Tumors. Thyroid 2020, 30, 1745–1751. [Google Scholar] [CrossRef]
- Pasqual, E.; Sosa, J.A.; Chen, Y.; Schonfeld, S.J.; Berrington de González, A.; Kitahara, C.M. Trends in the Management of Localized Papillary Thyroid Carcinoma in the United States (2000–2018). Thyroid 2022, 32, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Livraghi, T. Radiofrequency ablation of hepatocellular carcinoma. Surg. Oncol. Clin. N. Am. 2011, 20, 281–299. [Google Scholar] [CrossRef] [PubMed]
- de Baere, T.; Elias, D.; Dromain, C.; Din, M.G.; Kuoch, V.; Ducreux, M.; Boige, V.; Lassau, N.; Marteau, V.; Lasser, P.; et al. Radiofrequency ablation of 100 hepatic metastases with a mean follow-up of more than 1 year. Am. J. Roentgenol. 2000, 175, 1619–1625. [Google Scholar] [CrossRef] [PubMed]
- Papini, E.; Guglielmi, R.; Gharib, H.; Misischi, I.; Graziano, F.; Chianelli, M.; Crescenzi, A.; Bianchini, A.; Valle, D.; Bizzarri, G. Ultrasound-guided laser ablation of incidental papillary 23.thyroid microcarcinoma: A potential therapeutic approach in patients at surgical risk. Thyroid 2011, 21, 917–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valcavi, R.; Piana, S.; Bortolan, G.S.; Lai, R.; Barbieri, V.; Negro, R. Ultrasound-guided percutaneous laser ablation of papillary thyroid microcarcinoma: A feasibility study on three cases with pathological and immunohistochemical evaluation. Thyroid 2013, 23, 1578–1582. [Google Scholar] [CrossRef]
- Mauri, G.; Orsi, F.; Carriero, S.; Della Vigna, P.; De Fiori, E.; Monzani, D.; Pravettoni, G.; Grosso, E.; Manzoni, M.F.; Ansarin, M.; et al. Image-Guided Thermal Ablation as an Alternative to Surgery for Papillary Thyroid Microcarcinoma: Preliminary Results of an Italian Experience. Front. Endocrinol. 2021, 11, 575152. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, S.; Giudici, F.; Cesareo, R.; Antonelli, G.; Cavallaro, M.; Deandrea, M.; Giusti, M.; Mormile, A.; Negro, R.; Palermo, A.; et al. Five-Year Results of Radiofrequency and Laser Ablation of Benign Thyroid Nodules: A Multicenter Study from the Italian Minimally Invasive Treatments of the Thyroid Group. Thyroid 2020, 30, 1759–1770. [Google Scholar] [CrossRef]
- Bernardi, S.; Palermo, A.; Grasso, R.F.; Fabris, B.; Stacul, F.; Cesareo, R. Current Status and Challenges of US-Guided Radiofrequency Ablation of Thyroid Nodules in the Long Term: A Systematic Review. Cancers 2021, 13, 2746. [Google Scholar] [CrossRef]
- Orloff, L.A.; Noel, J.E.; Stack BCJr Russell, M.D.; Angelos, P.; Baek, J.H.; Brumund, K.T.; Chiang, F.Y.; Cunnane, M.B.; Davies, L.; Frasoldati, A.; et al. Radiofrequency ablation and related ultrasound-guided ablation technologies for treatment of benign and malignant thyroid disease: An international multidisciplinary consensus statement of the American Head and Neck Society Endocrine Surgery Section with the Asia Pacific Society of Thyroid Surgery, Associazione Medici Endocrinologi, British Association of Endocrine and Thyroid Surgeons, European Thyroid Association, Italian Society of Endocrine Surgery Units, Korean Society of Thyroid Radiology, Latin American Thyroid Society, and Thyroid Nodules Therapies Association. Head Neck 2022, 44, 633–660. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, M.; Song, Q.; Xie, F.; Luo, Y. Clinical outcomes of radiofrequency ablation for multifocal papillary thyroid microcarcinoma versus unifocal papillary thyroid microcarcinoma: A propensity-matched cohort study. Eur. Radiol. 2022, 32, 1216–1226. [Google Scholar] [CrossRef]
- Tong, M.; Li, S.; Li, Y.; Li, Y.; Feng, Y.; Che, Y. Efficacy and safety of radiofrequency, microwave and laser ablation for treating papillary thyroid microcarcinoma: A systematic review and meta-analysis. Int. J. Hyperth. 2019, 36, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, D.Y.; Wu, X.L. Effects of Microwave Ablation on Papillary Thyroid Microcarcinoma: A Five-Year Follow-Up Report. Thyroid 2020, 30, 1752–1758. [Google Scholar] [CrossRef]
- Xue, J.; Teng, D.; Wang, H. Efficacy and safety of ultrasound-guided radiofrequency ablation for papillary thyroid microcarcinoma: A systematic review and meta-analysis. Int. J. Hyperth. 2022, 39, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, S.P.J.; Coerts, H.I.; Gunput, S.T.G.; van Velsen, E.F.S.; Medici, M.; Moelker, A.; Peeters, R.P.; Verhoef, C.; van Ginhoven, T.M. Assessment of Radiofrequency Ablation for Papillary Microcarcinoma of the Thyroid: A Systematic Review and Meta-analysis. JAMA Otolaryngol. Head Neck Surg. 2022, 148, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Leboulleux, S.; Tuttle, R.M.; Pacini, F.; Schlumberger, M. Papillary thyroid microcarcinoma: Time to shift from surgery to active surveillance? Lancet Diabetes Endocrinol. 2016, 4, 933–942. [Google Scholar] [CrossRef]
- Kwon, H.; Oh, H.S.; Kim, M.; Park, S.; Jeon, M.J.; Kim, W.G.; Kim, W.B.; Shong, Y.K.; Song, D.E.; Baek, J.H.; et al. Active Surveillance for Patients With Papillary Thyroid Microcarcinoma: A Single Center’s Experience in Korea. J. Clin. Endocrinol. Metab. 2017, 102, 1917–1925. [Google Scholar] [CrossRef]
- Mauri, G.; Hegedüs, L.; Bandula, S.; Cazzato, R.L.; Czarniecka, A.; Dudeck, O.; Fugazzola, L.; Netea-Maier, R.; Russ, G.; Wallin, G.; et al. European Thyroid Association and Cardiovascular and Interventional Radiological Society of Europe 2021 Clinical Practice Guideline for the Use of Minimally Invasive Treatments in Malignant Thyroid Lesions. Eur. Thyroid J. 2021, 10, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Papini, E.; Monpeyssen, H.; Frasoldati, A.; Hegedüs, L. 2020 European Thyroid Association Clinical Practice Guideline for the Use of Image-Guided Ablation in Benign Thyroid Nodules. Eur. Thyroid J. 2020, 9, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.L.; Wei, Y.; Peng, L.L.; Li, Y.; Lu, N.C.; Yu, M.A. Recurrent Laryngeal Nerve Injury in Thermal Ablation of Thyroid Nodules-Risk Factors and Cause Analysis. J. Clin. Endocrinol. Metab. 2022, 107, e2930–e2937. [Google Scholar] [CrossRef]
- Morvan, J.B.; Maso, V.; Pascaud, D.; Marcy, P.Y. Tracheal necrosis following thyroid radiofrequency ablation. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2022, 139, 29–32. [Google Scholar] [CrossRef]
- Gunn, A.; Oyekunle, T.; Stang, M.; Kazaure, H.; Scheri, R. Recurrent Laryngeal Nerve Injury after Thyroid Surgery: An Analysis of 11,370 Patients. J. Surg. Res. 2020, 255, 42–49. [Google Scholar] [CrossRef] [PubMed]
Work Up, RFA & Follow-Up | Case 1 | Case 2 | |
---|---|---|---|
80 Years Old, Female | 88 Years Old, Male | ||
Oligometastatic PROSTATE | |||
T1aN0, Eu-TIRADS5, B6 | T2N0 PTC, Eu-TIRADS5, B5 | ||
Active surveillance | No | 12 months (2021–2022, June) | |
Progression | 50% volume before RFA T1a < 10 mm | (T1b to T2) shift | |
Thyroid volume: right + left lobes | 6 + 7 = 13 mL | 6 + 15 = 21 mL | |
TSH | Normal | Normal | |
Calcitonin | Normal | Normal | |
RFA procedure | May 2022 | June 2022 | |
Delivered Energy | 2240 J/mL | 3500 J/mL | |
Initial volume | 0.4 mL | 7.8 mL | |
Pain assessment | |||
Per RFA | 0.5/10 | 3/10 | |
Post RFA | 0/10 | 0/10 | |
Post–RFA Follow-up | RFA | 0.7 | 8.9 |
Volume assessment (mL) | 1 month | 0.42 | 3.4 |
3 months | 0.1 | 2.7 | |
6 months | 0.05 | 2.2 | |
9/10 months | 0.03 | 2.2 | |
13/12 months | <0.03 | 2.2 | |
VRR (%) | VRR | 93% | 75.3% |
Regrowth depiction in ablation area | None (13 months) | Medial part (0.3 mL, at 10 months) | |
Color Doppler/MVI/CEUS | Color Doppler/MVI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcy, P.Y.; Tassart, M.; Marchand, J.-G.; Thariat, J.; Bizeau, A.; Ghanassia, E. Percutaneous Radiofrequency Ablation of Thyroid Carcinomas Ineligible for Surgery, in the Elderly. Curr. Oncol. 2023, 30, 7439-7449. https://doi.org/10.3390/curroncol30080539
Marcy PY, Tassart M, Marchand J-G, Thariat J, Bizeau A, Ghanassia E. Percutaneous Radiofrequency Ablation of Thyroid Carcinomas Ineligible for Surgery, in the Elderly. Current Oncology. 2023; 30(8):7439-7449. https://doi.org/10.3390/curroncol30080539
Chicago/Turabian StyleMarcy, Pierre Yves, Marc Tassart, Jean-Guillaume Marchand, Juliette Thariat, Alain Bizeau, and Edouard Ghanassia. 2023. "Percutaneous Radiofrequency Ablation of Thyroid Carcinomas Ineligible for Surgery, in the Elderly" Current Oncology 30, no. 8: 7439-7449. https://doi.org/10.3390/curroncol30080539
APA StyleMarcy, P. Y., Tassart, M., Marchand, J. -G., Thariat, J., Bizeau, A., & Ghanassia, E. (2023). Percutaneous Radiofrequency Ablation of Thyroid Carcinomas Ineligible for Surgery, in the Elderly. Current Oncology, 30(8), 7439-7449. https://doi.org/10.3390/curroncol30080539