Broad Scale Spatial Modelling of Wet Bulb Globe Temperature to Investigate Impact of Shade and Airflow on Heat Injury Risk and Labour Capacity in Warm to Hot Climates
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of Wind Speed on WBGT
3.2. Effect of Shade Conditions on WBGT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kjellstrom, T.; Kovats, R.S.; Lloyd, S.J.; Holt, T.; Tol, R.S. The direct impact of climate change on regional labor productivity. Arch. Environ. Occup. Health 2009, 64, 217–227. [Google Scholar] [CrossRef]
- Xiang, J.; Bi, P.; Pisaniello, D.; Hansen, A. Health impacts of workplace heat exposure: An epidemiological review. Ind. Health 2014, 52, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A. Hot weather and heat extremes: Health risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef]
- Raymond, C.; Matthews, T.; Horton, R.M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 2020, 6, eaaw1838. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA 2010, 107, 9552–9555. [Google Scholar] [CrossRef]
- Pal, J.; Eltahir, E. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Chang. 2016, 6, 197–200. [Google Scholar] [CrossRef]
- Raymond, C.; Singh, D.; Horton, R.M. Spatiotemporal Patterns and Synoptics of Extreme Wet-Bulb Temperature in the Contiguous United States. J. Geophys. Res. Atmos. 2017, 122, 13108–113124. [Google Scholar] [CrossRef]
- Yaglou, C.; Minaed, D. Control of heat casualties at military training centers. Arch. Indust. Health 1957, 16, 302–316. [Google Scholar]
- Moran, D.S.; Pandolf, K.B.; Shapiro, Y.; Heled, Y.; Shani, Y.; Mathew, W.T.; Gonzalez, R.R. An environmental stress index (ESI) as a substitute for the wet bulb globe temperature (WBGT). J. Therm. Biol. 2001, 26, 427–431. [Google Scholar] [CrossRef]
- Parsons, K. Heat Stress Standard ISO 7243 and its Global Application. Ind. Health 2006, 44, 368–379. [Google Scholar] [CrossRef]
- Hunt, A.P.; Brearley, M.; Hall, A.; Pope, R. Climate Change Effects on the Predicted Heat Strain and Labour Capacity of Outdoor Workers in Australia. Int. J. Environ. Res. Public Health 2023, 20, 5675. [Google Scholar] [CrossRef]
- Willett, K.M.; Sherwood, S. Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol. 2012, 32, 161–177. [Google Scholar] [CrossRef]
- Australian Bureau of Meteorology. Thermal Comfort Observations. Available online: http://www.bom.gov.au/info/thermal_stress/ (accessed on 9 June 2023).
- Kjellstrom, T.; Lemke, B.; Otto, M. Mapping occupational heat exposure and effects in South-East Asia: Ongoing time trends 1980–2011 and future estimates to 2050. Ind. Health 2013, 51, 56–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liljegren, J.C.; Carhart, R.A.; Lawday, P.; Tschopp, S.; Sharp, R. Modeling the wet bulb globe temperature using standard meteorological measurements. J. Occup. Environ. Hyg. 2008, 5, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Bitencourt, D.P.; Alves, L.; Shibuya, E.K.; da Cunha, I.; de Souza, J.P. Climate change impacts on heat stress in Brazil—Past, present, and future implications for occupational heat exposure. Int. J. Climatol. 2021, 41, E2741–E2756. [Google Scholar] [CrossRef]
- Maia, P.A.; Ruas, Á.C.; Bitencourt, D.P. Wet-bulb globe temperature index estimation using meteorological data from São Paulo State, Brazil. Int. J. Biometeorol. 2015, 59, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; Horta, A.; Khan, M.R.; Crabbe, R.A. Spatial analysis of outdoor wet bulb globe temperature under RCP4. 5 and RCP8. 5 scenarios for 2041–2080 across a range of temperate to hot climates. Weather. Clim. Extrem. 2022, 35, 100420. [Google Scholar] [CrossRef]
- Budd, G.M. Wet-bulb globe temperature (WBGT)—Its history and its limitations. J. Sci. Med. Sport 2008, 11, 20–32. [Google Scholar] [CrossRef]
- Patel, T.; Mullen, S.P.; Santee, W.R. Comparison of Methods for Estimating Wet-Bulb Globe Temperature Index From Standard Meteorological Measurements. Mil. Med. 2013, 178, 926–933. [Google Scholar] [CrossRef] [Green Version]
- Dunne, J.P.; Stouffer, R.J.; John, J.G. Reductions in labour capacity from heat stress under climate warming. Nat. Clim. Chang. 2013, 3, 563–566. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, S.; Zhang, B.; Wang, D. Adapting to changing labor productivity as a result of intensified heat stress in a changing climate. GeoHealth 2021, 5, e2020GH000313. [Google Scholar] [CrossRef]
- Liu, X. Reductions in labor capacity from intensified heat stress in China under future climate change. Int. J. Environ. Res. Public Health 2020, 17, 1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raupach, M.; Briggs, P.; Haverd, V.; King, E.; Paget, M.; Trudinger, C. Australian Water Availability Project (AWAP): CSIRO Marine and Atmospheric Research Component: Final Report for Phase 3; CAWCR Technical Report No. 013; Centre for Australian Weather and Climate Research: Canberra, Australia, 2009. [Google Scholar]
- Australian Bureau of Meteorology. Australian Historical Climate Database [Electronic Resource]. 2021. Available online: http://www.bom.gov.au/climate/maps/ (accessed on 15 October 2022).
- Jones, D.A.; Wang, W.; Fawcett, R. High-quality spatial climate data-sets for Australia. Aust. Meteorol. Oceanogr. J. 2009, 58, 233–248. [Google Scholar] [CrossRef]
- McVicar, T.R. Near-Surface Wind Speed, version 10; CSIRO: Canberra, Australia, 2011. Available online: https://data.csiro.au/collection/csiro:Wind_Speed (accessed on 30 November 2022).
- McVicar, T.R.; Van Niel, T.G.; Li, L.T.; Roderick, M.L.; Rayner, D.P.; Ricciardulli, L.; Donohue, R.J. Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Royal Meteorological Society. The Beaufort Wind Scale. Available online: https://www.rmets.org/metmatters/beaufort-wind-scale (accessed on 2 June 2023).
- Corripio, J.G. insol: Solar Radiation, version 1.2.2; R package: Innsbruck, Austria, 2020.
- Brouillet, A.; Joussaume, S. Investigating the Role of the Relative Humidity in the Co-Occurrence of Temperature and Heat Stress Extremes in CMIP5 Projections. Geophys. Res. Lett. 2019, 46, 11435–11443. [Google Scholar] [CrossRef] [Green Version]
- Honjo, T.; Seo, Y.; Yamasaki, Y.; Tsunematsu, N.; Yokoyama, H.; Yamato, H.; Mikami, T. Thermal comfort along the marathon course of the 2020 Tokyo Olympics. Int. J. Biometeorol. 2018, 62, 1407–1419. [Google Scholar] [CrossRef]
- Lauwaet, D.; Maiheu, B.; De Ridder, K.; Boënne, W.; Hooyberghs, H.; Demuzere, M.; Verdonck, M.-L. A new method to assess fine-scale outdoor thermal comfort for urban agglomerations. Climate 2020, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Castiglia Feitosa, R.; Wilkinson, S.J.; Oliveira, B.; Hacon, S. Wind and greenery effects in attenuating heat stress: A case study. J. Clean. Prod. 2021, 291, 125919. [Google Scholar] [CrossRef]
- Kjellstrom, T.; Briggs, D.; Freyberg, C.; Lemke, B.; Otto, M.; Hyatt, O. Heat, human performance, and occupational health: A key issue for the assessment of global climate change impacts. Annu. Rev. Public Health 2016, 37, 97–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takakura, J.y.; Fujimori, S.; Takahashi, K.; Hijioka, Y.; Honda, Y. Site-specific hourly resolution wet bulb globe temperature reconstruction from gridded daily resolution climate variables for planning climate change adaptation measures. Int. J. Biometeorol. 2019, 63, 787–800. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, UK, 1987. [Google Scholar]
- Oliveira, B.F.A.; Silveira, I.H.; Feitosa, R.C.; Horta, M.A.P.; Junger, W.L.; Hacon, S. Human Heat stress risk prediction in the Brazilian semiarid Region based on the Wet-Bulb Globe Temperature. An. Acad. Bras. Ciências 2019, 91. [Google Scholar] [CrossRef] [PubMed]
Wind Speeds Modelled in This Study (m/s) | Wind Force | Description | Specifications |
---|---|---|---|
0.5 | 1 | Light air | Direction shown by smoke drift but not by wind vanes. Sea rippled |
1.5 | 2 | Light breeze | Wind felt on face; leaves rustle; wind vane moved by wind. Small wavelets on sea |
3.3 | 3 | Gentle breeze | Leaves and small twigs in constant motion; light flags extended. Large wavelets on sea |
5.5 | 4 | Moderate breeze | Raises dust and loose paper; small branches moved. Small waves, fairly frequent white horses |
7.9 | 5 | Fresh breeze | Small trees in leaf begin to sway; crested wavelets form on inland waters. Moderate waves, many white horses |
Heat Category | WBGT (°C) |
---|---|
1 | 25.6–27.8 |
2 | 27.8–29.4 |
3 | 29.4–31.1 |
4 | 31.1–32.2 |
5 | >32.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hall, A.; Horta, A. Broad Scale Spatial Modelling of Wet Bulb Globe Temperature to Investigate Impact of Shade and Airflow on Heat Injury Risk and Labour Capacity in Warm to Hot Climates. Int. J. Environ. Res. Public Health 2023, 20, 6531. https://doi.org/10.3390/ijerph20156531
Hall A, Horta A. Broad Scale Spatial Modelling of Wet Bulb Globe Temperature to Investigate Impact of Shade and Airflow on Heat Injury Risk and Labour Capacity in Warm to Hot Climates. International Journal of Environmental Research and Public Health. 2023; 20(15):6531. https://doi.org/10.3390/ijerph20156531
Chicago/Turabian StyleHall, Andrew, and Ana Horta. 2023. "Broad Scale Spatial Modelling of Wet Bulb Globe Temperature to Investigate Impact of Shade and Airflow on Heat Injury Risk and Labour Capacity in Warm to Hot Climates" International Journal of Environmental Research and Public Health 20, no. 15: 6531. https://doi.org/10.3390/ijerph20156531
APA StyleHall, A., & Horta, A. (2023). Broad Scale Spatial Modelling of Wet Bulb Globe Temperature to Investigate Impact of Shade and Airflow on Heat Injury Risk and Labour Capacity in Warm to Hot Climates. International Journal of Environmental Research and Public Health, 20(15), 6531. https://doi.org/10.3390/ijerph20156531