Sarcopenia Identification during Comprehensive Geriatric Assessment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parker, S.G.; Mccue, P.; Phelps, K.; Mccleod, A.; Arora, S.; Nockels, K.; Kennedy, S.; Roberts, H.; Conroy, S. What is Comprehensive Geriatric Assessment (CGA)? An umbrella review. Age Ageing 2018, 47, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Rosen, S.L.; Reuben, D.B. Geriatric assessment tools. Mt. Sinai J. Med. A J. Transl. Pers. Med. 2011, 78, 489–497. [Google Scholar] [CrossRef]
- Van Craen, K.; Braes, T.; Wellens, N.; Denhaerynck, K.; Flamaing, J.; Moons, P.; Boonen, S.; Gosset, C.; Petermans, J.; Milisen, K. The effectiveness of inpatient geriatric evaluation and management units: A systematic review and meta-analysis. J. Am. Geriatr. Soc. 2010, 58, 83–92. [Google Scholar] [CrossRef]
- Ellis, G.; Gardner, M.; Tsiachristas, A.; Langhorne, P.; Burke, O.; Rh, H.; Sp, C.; Kircher, T.; Somme, D.; Saltvedt, I.; et al. Comprehensive Geriatric Assessment for Older Adults Admitted to Hospital; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, I.H. Symposium: Sarcopenia: Diagnosis and mechanisms sarcopenia: Origins and clinical relevance. J. Nutr. 1997, 127, 990–991. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earthman, C.P. Body composition tools for assessment of adult malnutrition at the bedside: A tutorial on research considerations and clinical applications. J. Parenter. Enter. Nutr. 2015, 39, 787–822. [Google Scholar] [CrossRef] [PubMed]
- Sergi, G.; De Rui, M.; Veronese, N.; Bolzetta, F.; Berton, L.; Carraro, S.; Bano, G.; Coin, A.; Manzato, E.; Perissinotto, E. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin. Nutr. 2015, 34, 667–673. [Google Scholar] [CrossRef]
- Landi, F.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.; Bernabei, R.; Onder, G. Sarcopenia as a risk factor for falls in elderly individuals: Results from the ilSIRENTE study. Clin. Nutr. 2018, 31, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Liperoti, R.; Fusco, D.; Mastropaolo, S.; Quattrociocchi, D.; Proia, A.; Tosato, M.; Bernabei, R. Sarcopenia and Mortality among Older Nursing Home Residents. JMDA 2012, 13, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Malafarina, V.; Uriz-Otano, F.; Iniesta, R.; Gil-Guerrero, L. Effectiveness of nutritional supplementation on muscle mass in treatment of sarcopenia in old age: A systematic review. J. Am. Med. Dir. Assoc. 2013, 14, 10–17. [Google Scholar] [CrossRef]
- Dodds, R.M.; Roberts, H.C.; Cooper, C.; Sayer, A.A. The epidemiology of sarcopenia. J. Clin. Densitom. 2015, 18, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, L.; Ferrucci, L.; Cherubini, A.; Maggio, M.; Bandinelli, S.; Savino, E.; Brombo, G.; Zuliani, G.; Guralnik, J.M.; Landi, F. The predictive value of the EWGSOP definition of sarcopenia: Results from the InCHIANTI study. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2016, 71, 259–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yalcin, A.; Aras, S.; Atmis, V.; Cengiz, O.K.; Varli, M.; Cinar, E.; Atli, T. Sarcopenia prevalence and factors associated with sarcopenia in older people living in a nursing home in A nkara T urkey. Geriatr. Gerontol. Int. 2016, 16, 903–910. [Google Scholar] [CrossRef]
- Ethgen, O.; Beaudart, C.; Buckinx, F.; Bruyère, O.; Reginster, J.-Y. The future prevalence of sarcopenia in Europe: A claim for public health action. Calcif. Tissue Int. 2017, 100, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dżygadło, B.; Łepecka-Klusek, C.; Pilewski, B. Wykorzystanie analizy impedancji bioelektrycznej w profilaktyce i leczeniu nadwagi i otyłości. Probl. Hig. Epidemiol. 2012, 93, 274–280. [Google Scholar]
- Cornish, B. Bioimpedance analysis: Scientific background. Lymphat. Res. Biol. 2006, 4, 47–50. [Google Scholar] [CrossRef]
- Saliba, D.; Elliott, M.; Rubenstein, L.Z.; Solomon, D.H.; Young, R.T.; Kamberg, C.J.; Carol Roth, R.N.; MacLean, C.H.; Shekelle, P.G.; Sloss, E.M. The Vulnerable Elders Survey: A tool for identifying vulnerable older people in the community. J. Am. Geriatr. Soc. 2001, 49, 1691–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Lin, W.; Chang, L.H. The linear relationship between the Vulnerable Elders Survey-13 score and mortality in an Asian population of community-dwelling older persons. Arch. Gerontol. Geriatr. 2018, 74, 32–38. [Google Scholar] [CrossRef]
- Min, L.C.; Elliott, M.N.; Wenger, N.S.; Saliba, D. Higher Vulnerable Elders Survey Scores Predict Death and Functional Decline in Vulnerable Older People. J. Am. Geriatr. Soc. 2006, 54, 507–511. [Google Scholar] [CrossRef]
- Zasadzka, E.; Trzmiel, T.; Pawlaczyk, M. Polish Translation and Validation of the SARC-F Tool for the Assessment of Sarcopenia. Clin. Interv. Aging 2020, 15, 567–574. [Google Scholar] [CrossRef] [Green Version]
- Tyrovolas, S.; Koyanagi, A.; Olaya, B.; Ayuso-mateos, J.L.; Miret, M.; Chatterji, S.; Tobiasz-adamczyk, B.; Koskinen, S.; Leonardi, M.; Haro, J.M. Factors associated with skeletal muscle mass, sarcopenia, and sarcopenic obesity in older adults: A multi-continent study. J. Cachexia Sarcopenia Muscle 2016, 7, 312–321. [Google Scholar] [CrossRef]
- Smoliner, C.; Sieber, C.C.; Wirth, R. Prevalence of Sarcopenia in Geriatric Hospitalized Patients. J. Am. Med. Dir. Assoc. 2014, 15, 267–272. [Google Scholar] [CrossRef]
- Tanimoto, Y.; Watanabe, M.; Sun, W.; Sugiura, Y. Sarcopenia and falls in community-dwelling elderly subjects in Japan: Defining sarcopenia according to criteria of the European Working Group on Sarcopenia in Older People. Arch. Gerontol. Geriatr. 2014, 59, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Legrand, D.; Vaes, B.; Matheï, C.; Adriaensen, W.; Van Pottelbergh, G.; Degryse, J. Muscle strength and physical performance as predictors of mortality, hospitalization, and disability in the oldest old. J. Am. Geriatr. Soc. 2014, 62, 1030–1038. [Google Scholar] [CrossRef]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, But Not Muscle Mass, Is Associated With Mortality in the Health, Aging and Body Composition Study Cohort. J. Gerontol. Ser. A 2006, 61, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Merchant, R.A.; Chen, M.Z.; Wong, B.L.L.; Ng, S.E.; Shirooka, H.; Lim, J.Y.; Sandrasageran, S.; Morley, J.E. Relationship Between Fear of Falling, Fear-Related Activity Restriction, Frailty, and Sarcopenia. J. Am. Geriatr. Soc. 2020, 68, 2602–2608. [Google Scholar] [CrossRef]
- Grammatikopoulos, I.; Koutentakis, C. Social activity and participation as determinants of anxiety and depression among elderly in primary care. In Annals of General Psychiatry; BioMed Central: London, UK, 2010; Volume 9, p. 1. [Google Scholar]
- Ling, C.H.; de Craen, A.J.; Slagboom, P.E.; Gunn, D.A.; Stokkel, M.P.; Westendorp, R.G.; Maier, A.B. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin. Nutr. 2011, 30, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, M.; Zhu, F.; Kotanko, P.; Kuhlmann, M.; Ramirez, L.; Heymsfield, S.B.; Handelman, G.; Levin, N.W. Assessment of body composition in dialysis patients by arm bioimpedance compared to MRI and 40K measurements. Blood Purif. 2009, 27, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalil, S.F.; Mohktar, M.S.; Ibrahim, F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 2014, 14, 10895–10928. [Google Scholar] [CrossRef] [PubMed]
- Kushner, R.F.; Gudivaka, R.; Schoeller, D.A. Clinical characteristics influencing bioelectrical impedance analysis measurements. Am. J. Clin. Nutr. 1996, 64, 423S–427S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szulc, P.; Munoz, F.; Marchand, F.; Chapurlat, R.; Delmas, P.D. Rapid loss of appendicular skeletal muscle mass is associated with higher all-cause mortality in older men: The prospective MINOS study. Am. J. Clin. Nutr. 2010, 91, 1227–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakurai, K.; Kubo, N.; Tamura, T.; Toyokawa, T.; Amano, R.; Tanaka, H.; Muguruma, K.; Yashiro, M.; Maeda, K.; Hirakawa, K. Adverse effects of low preoperative skeletal muscle mass in patients undergoing gastrectomy for gastric cancer. Ann. Surg. Oncol. 2017, 24, 2712–2719. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-westphal, A. Bioelectrical phase angle and impedance vector analysis e Clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef]
- Wirth, R.; Volkert, D.; Rösler, A.; Sieber, C.C.; Bauer, J.M. Bioelectric impedance phase angle is associated with hospital mortality of geriatric patients. Arch. Gerontol. Geriatr. 2010, 51, 290–294. [Google Scholar] [CrossRef]
- Genton, L.; Norman, K.; Spoerri, A.; Pichard, C.; Karsegard, V.L.; Herrmann, F.R.; Graf, C.E. Bioimpedance-derived phase angle and mortality among older people. Rejuvenation Res. 2017, 20, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Basile, C.; Della-Morte, D.; Cacciatore, F.; Gargiulo, G.; Galizia, G.; Roselli, M.; Curcio, F.; Bonaduce, D.; Abete, P. Phase angle as bioelectrical marker to identify elderly patients at risk of sarcopenia. Exp. Gerontol. 2014, 58, 43–46. [Google Scholar] [CrossRef]
- Reis, A.S.; Santos, H.O.; Limirio, L.S.; De Oliveira, E.P. Phase Angle Is Associated with Handgrip Transplantation Patients. J. Ren. Nutr. 2018, 29, 196–204. [Google Scholar] [CrossRef]
Overall (n = 101) | Women (n = 76) | Men (n = 25) | |
---|---|---|---|
Average Age | 78.53 | 78.79 | 77.76 |
Median Age ± SD | 79 ± 6.79 | 79 ± 6.62 | 79 ± 7.2 |
Overall | Women | Men | |
---|---|---|---|
Sarcopenia | 17 (16.8%) | 10 (13.2%) | 7 (28%) |
Severe sarcopenia | 6 (5.9%) | 4 (5.3%) | 2 (8%) |
Sarcopenic (n = 17) | Non-Sarcopenic (n = 84) | p | |||||
---|---|---|---|---|---|---|---|
Mean | Min. | Max. | Mean | Min. | Max. | ||
VES-13 | 6.47 | 3.00 | 9.00 | 3.75 | 0.00 | 10.00 | <0.001 |
BMI (kg/m2) | 24.84 | 18.33 | 37.96 | 27.53 | 15.98 | 47.29 | 0.18 |
Fat mass (%) | 27.38 | 8.10 | 67.49 | 32.66 | 8.70 | 51.22 | 0.03 |
Phase angle (φ) | 4.41 | 3.00 | 8.00 | 4.55 | 3.60 | 6.80 | 0.5 |
Age | 81.18 | 71.00 | 94.00 | 78.00 | 65.00 | 90.00 | 0.14 |
Sarcopenic Patients | Non-Sarcopenic Patients | p | |
---|---|---|---|
VES-13 Activities | |||
Difficulty with | |||
Kneeling, bending and stooping | 12 (70.6%) | 44 (52.4%) | 0.62 |
Lifting and carrying 5 kg | 9 (52.9%) | 25 (29.8%) | 0.07 |
Reaching out and lifting upper extremities above the shoulder | 9 (52.9%) | 21 (25%) | 0.02 |
Writing or handling and grasping small objects | 5 (29.4%) | 13 (15.5%) | 0.17 |
Walking the distance of 400 m | 10 (58.8%) | 22 (26.2%) | 0.01 |
Performing hard housework | 17 (100%) | 34 (40.5%) | <0.001 |
Needs assitances with | |||
Shopping | 5 (29.4%) | 12 (14.3%) | 0.13 |
Money management | 0 | 1 (1.19%) | - |
Transfer | 0 | 0 | - |
Light housework | 5 (29.4%) | 6 (7.1%) | 0.01 |
Bathing and showering | 8 (47.1%) | 6 (7.1%) | <0.001 |
Additional questions | |||
History of falls within last 12 months | 11 (64.7%) | 38 (45.2%) | 0.14 |
Avoidance of visiting friends or family members | 9 (52.9%) | 21 (25%) | 0.02 |
Dependance in meal preparation | 6 (35.3%) | 2 (2.4%) | <0.001 |
Low Grip Strength (n = 19) | Normal Grip Strength (n = 82) | p | |||||
---|---|---|---|---|---|---|---|
Mean | Min. | Max. | Mean | Min. | Max. | ||
VES-13 | 6.65 | 3.00 | 9.00 | 3.81 | 0.00 | 10.00 | <0.001 |
BMI (kg/m2) | 26.80 | 18.33 | 37.96 | 27.12 | 15.98 | 47.29 | 0.6 |
Muscle mass (%) | 61.20 | 56.10 | 87.30 | 69.20 | 56.11 | 87.27 | 0.03 |
Fat mass (%) | 28.86 | 8.10 | 67.49 | 32.27 | 10.10 | 51.22 | 0.09 |
ASM/h2 (kg/m2) | 7.22 | 5.98 | 10.73 | 7.65 | 5.98 | 10.07 | 0.55 |
Phase angle (φ) | 4.74 | 3.00 | 8.00 | 4.49 | 3.60 | 6.80 | 0.92 |
Grip Strength | Gait Speed | ASM/h2 | ||||
---|---|---|---|---|---|---|
Spearman Coeff. | p | Spearman Coeff. | p | Spearman Coeff. | p | |
Gait speed (m/s) | 0.219 | 0.028 | - | - | 0.447 | <0.001 |
VES-13 | −0.521 | 0.000 | −0.559 | 0.000 | 0.301 | 0.01 |
Body mass (kg) | 0.335 | 0.001 | 0.023 | 0.817 | −0.165 | 0.1 |
BMI (kg/m2) | 0.121 | 0.226 | −0.054 | 0.589 | 0.705 | <0.001 |
Fat mass (%) | −0.284 | 0.004 | 0.079 | 0.434 | 0.689 | <0.001 |
LBM (kg) | 0.557 | 0.000 | −0.044 | 0.665 | 0.062 | 0.54 |
LBM (%) | 0.216 | 0.030 | −0.134 | 0.182 | 0.756 | <0.001 |
Muscle mass (%) | 0.221 | 0.027 | −0.134 | 0.180 | −0.070 | 0.49 |
ASM/h2 (kg/m2) | 0.353 | 0.000 | −0.162 | 0.105 | - | - |
Phase angle (φ) | 0.245 | 0.014 | −0.026 | 0.800 | 0.317 | <0.001 |
Low Gait Speed (n = 27) | Normal Gait Speed (n = 74) | p | |||||
---|---|---|---|---|---|---|---|
Mean | Min. | Max. | Mean | Min. | Max. | ||
VES-13 | 5.57 | 1.00 | 9.00 | 3.02 | 0.00 | 10.00 | <0.001 |
BMI (kg/m2) | 27.27 | 18.33 | 38.33 | 26.91 | 15.98 | 47.29 | 0.75 |
Muscle mass (%) | 64.29 | 53.90 | 87.27 | 60.74 | 46.30 | 85.15 | 0.31 |
Fat mass (%) | 28.86 | 8.10 | 67.49 | 32.27 | 10.10 | 51.22 | 0.12 |
ASM/h2 (kg/m2) | 7.52 | 5.61 | 10.58 | 7.08 | 5.69 | 10.73 | 0.16 |
Phase angle (φ) | 4.61 | 3.00 | 8.00 | 4.45 | 3.60 | 6.80 | 0.67 |
Low ASM/h2 (n = 19) | Normal ASM/h2 (n = 82) | p | |||||
---|---|---|---|---|---|---|---|
Mean | Min. | Max. | Mean | Min. | Max. | ||
VES-13 | 5.89 | 2.00 | 8.00 | 4.04 | 0.00 | 10.00 | 0.03 |
BMI (kg/m2) | 19.89 | 18.33 | 28.82 | 27.78 | 15.98 | 47.29 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pachołek, K.; Sobieszczańska, M. Sarcopenia Identification during Comprehensive Geriatric Assessment. Int. J. Environ. Res. Public Health 2022, 19, 32. https://doi.org/10.3390/ijerph19010032
Pachołek K, Sobieszczańska M. Sarcopenia Identification during Comprehensive Geriatric Assessment. International Journal of Environmental Research and Public Health. 2022; 19(1):32. https://doi.org/10.3390/ijerph19010032
Chicago/Turabian StylePachołek, Krzysztof, and Małgorzata Sobieszczańska. 2022. "Sarcopenia Identification during Comprehensive Geriatric Assessment" International Journal of Environmental Research and Public Health 19, no. 1: 32. https://doi.org/10.3390/ijerph19010032
APA StylePachołek, K., & Sobieszczańska, M. (2022). Sarcopenia Identification during Comprehensive Geriatric Assessment. International Journal of Environmental Research and Public Health, 19(1), 32. https://doi.org/10.3390/ijerph19010032