Traditional Thai Massage Promoted Immunity in the Elderly via Attenuation of Senescent CD4+ T Cell Subsets: A Randomized Crossover Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Interventions
2.3. Study Design
2.4. Blood Collection and Chemical Parameters
2.5. Measurement of Cell Surface Markers of CD4+ T Cells and Their Intracellular Cytokine Production
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Alteration of CD4+ T Cell Subsets after TTM
3.3. The Reduction in High Percentages of CD4+CD28nullNKG2D+ T Cells after Multiple Rounds of TTM
3.4. Effect of Multiple TTM on Intracellular Cytokines IFN-γ and IL-17 of the High Group for CD4+28null NKG2D+ T Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sripongngam, T.; Eungpinichpong, W.; Sirivongs, D.; Kanpittaya, J.; Tangvoraphonkchai, K.; Chanaboon, S. Immediate Effects of Traditional Thai Massage on Psychological Stress as Indicated by Salivary Alpha-Amylase Levels in Healthy Persons. Med. Sci. Monit. Basic Res. 2015, 21, 216–221. [Google Scholar] [CrossRef]
- Sripongngam, T.; Eungpinichpong, W.; Sirivongs, D.; Kanpittaya, J.; Tangvoraphonkchai, K.; Chanaboon, S. Psychological stress can be decreased by traditional Thai massage. J. Med. Assoc. Thail. 2015, 98, 29–35. [Google Scholar]
- Buttagat, V.; Eungpinichpong, W.; Chatchawan, U.; Kharmwan, S. The immediate effects of traditional Thai massage on heart rate variability and stress-related parameters in patients with back pain associated with myofascial trigger points. J. Bodyw. Mov. Ther. 2011, 15, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Buttagat, V.; Eungpinichpong, W.; Chatchawan, U.; Arayawichanon, P. Therapeutic effects of traditional Thai massage on pain, muscle tension and anxiety in patients with scapulocostal syndrome: A randomized single-blinded pilot study. J. Bodyw. Mov. Ther. 2012, 16, 57–63. [Google Scholar] [CrossRef]
- Buttagat, V.; Narktro, T.; Onsrira, K.; Pobsamai, C. Short-term effects of traditional Thai massage on electromyogram, muscle tension and pain among patients with upper back pain associated with myofascial trigger points. Complement. Ther. Med. 2016, 28, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.; Bennett, M.J.; Chatchawan, U.; Jenjaiwit, P.; Pantumethakul, R.; Kunhasura, S.; Eungpinichpong, W. Acute effects of traditional Thai massage on cortisol levels, arterial blood pressure and stress perception in academic stress condition: A single blind randomised controlled trial. J. Bodyw. Mov. Ther. 2016, 20, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Waters-Banker, C.; Dupont-Versteegden, E.E.; Kitzman, P.H.; Butterfield, T.A. Investigating the mechanisms of massage efficacy: The role of mechanical immunomodulation. J. Athl. Train. 2014, 49, 266–273. [Google Scholar] [CrossRef]
- Tidball, J.G.; Villalta, S.A. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, 1173–1187. [Google Scholar] [CrossRef] [PubMed]
- Rossy, J.; Laufer, J.M.; Legler, D.F. Role of Mechanotransduction and Tension in T Cell Function. Front. Immunol. 2018, 9, 2638. [Google Scholar] [CrossRef]
- Kargl, C.K.; Sullivan, B.P.; Gavin, T.P. Massage during muscle unloading increases protein turnover in the massaged and non-massaged, contralateral limb, but does not attenuate muscle atrophy. Acta Physiol. 2020, 229, 3. [Google Scholar] [CrossRef]
- Kim, J.K.; Shin, Y.J.; Ha, L.J.; Kim, D.H.; Kim, D.H. Unraveling the Mechanobiology of the Immune System. Adv. Healthc. Mater. 2019, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Pumthong, G.; Nathason, A.; Tuseewan, M.; Pinthong, P.; Klangprapun, S.; Thepsuriyanon, D.; Kotta, P. Complementary and alternative medicines for diabetes mellitus management in ASEAN countries. Complement. Ther. Med. 2015, 23, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Hongsuwan, C.; Eungpinichpong, W.; Chatchawan, U.; Yamauchi, J. Effects of Thai massage on physical fitness in soccer players. J. Phys. Ther. Sci. 2015, 27, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Fulop, T.; Larbi, A.; Dupuis, G.; Le Page, A.; Frost, E.H.; Cohen, A.A.; Witkowski, J.M.; Franceschi, C. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front. Immunol. 2017, 8, 1960. [Google Scholar] [CrossRef]
- Abbas, A.K.; Lichtman, A.H.H.; Pillai, S. Differentiation and Functions of CD4+ Effector T Cells. In Cellular and Molecular Immunology E-Book, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2018; p. 213. [Google Scholar]
- Broux, B.; Markovic-Plese, S.; Stinissen, P.; Hellings, N. Pathogenic features of CD4+CD28- T cells in immune disorders. Trends Mol. Med. 2012, 18, 446–453. [Google Scholar] [CrossRef]
- Thewissen, M.; Somers, V.; Venken, K.; Linsen, L.; Van Paassen, P.; Geusens, P.; Damoiseaux, J.; Stinissen, P. Analyses of immunosenescent markers in patients with autoimmune disease. Clin. Immunol. 2007, 123, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.H.; Lee, W.W. Unusual CD4(+)CD28(-) T Cells and Their Pathogenic Role in Chronic Inflammatory Disorders. Immune Netw. 2016, 16, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Babic, M.; Romagnani, C. The Role of Natural Killer Group 2, Member D in Chronic Inflammation and Autoimmunity. Front. Immunol. 2018, 9, 1219. [Google Scholar] [CrossRef] [PubMed]
- Phoksawat, W.; Jumnainsong, A.; Sornkayasit, K.; Srisak, K.; Komanasin, N.; Leelayuwat, C. IL-17 and IFN-γ Productions by CD4+ T cells and T cell Subsets Expressing NKG2D Associated with the Number of Risk Factors for Cardiovascular Diseases. Mol. Immunol. 2020, 122, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, A.N.; Brandes, J.C.; Weyand, C.M.; Goronzy, J.J. Modulation of CD28 expression: Distinct regulatory pathways during activation and replicative senescence. J. Immunol. 1999, 162, 6572–6579. [Google Scholar]
- Thewissen, M.; Somers, V.; Hellings, N.; Fraussen, J.; Damoiseaux, J.; Stinissen, P. CD4+CD28null T cells in autoimmune disease: Pathogenic features and decreased susceptibility to immunoregulation. J. Immunol. 2007, 179, 6514–6523. [Google Scholar] [CrossRef]
- Suarez-Álvarez, B.; Rodríguez, R.M.; Schlangen, K.; Raneros, A.B.; Márquez-Kisinousky, L.; Fernández, A.F.; Díaz-Corte, C.; Aransay, A.M.; López-Larrea, C. Phenotypic characteristics of aged CD4(+) CD28(null) T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. Aging Cell 2017, 16, 293–303. [Google Scholar] [CrossRef]
- Maly, K.; Schirmer, M. The story of CD4+ CD28- T cells revisited: Solved or still ongoing? J. Immunol. Res. 2015, 2015, 348746. [Google Scholar] [CrossRef]
- Alonso-Arias, R.; Moro-García, M.A.; López-Vázquez, A.; Rodrigo, L.; Baltar, J.; García, F.M.S.; Jaurrieta, J.J.S.; López-Larrea, C. NKG2D expression in CD4+ T lymphocytes as a marker of senescence in the aged immune system. Age 2011, 33, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Phoksawat, W.; Jumnainsong, A.; Leelayuwat, N.; Leelayuwat, C. Aberrant NKG2D expression with IL-17 production of CD4+ T subsets in patients with type 2 diabetes. Immunobiology 2017, 222, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Spieth, P.M.; Kubasch, A.S.; Penzlin, A.I.; Illigens, B.M.; Barlinn, K.; Siepmann, T. Randomized controlled trials—A matter of design. Neuropsychiatr. Dis. Treat. 2016, 12, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Pavão, T.S.; Vianna, P.; Pillat, M.M.; Machado, A.B.; Bauer, M.E. Acupuncture is effective to attenuate stress and stimulate lymphocyte proliferation in the elderly. Neurosci. Lett. 2010, 484, 47–50. [Google Scholar] [CrossRef]
- Andersson, A.K.; Sumariwalla, P.F.; McCann, F.E.; Amjadi, P.; Chang, C.; McNamee, K.; Tornehave, D.; Haase, C.; Agersø, H.; Stennicke, V.W.; et al. Blockade of NKG2D ameliorates disease in mice with collagen-induced arthritis: A potential pathogenic role in chronic inflammatory arthritis. Arthritis Rheum. 2011, 63, 2617–2629. [Google Scholar] [CrossRef]
- Major, B.; Rattazzi, L.; Brod, S.; Pilipović, I.; Leposavić, G.; D’Acquisto, F. Massage-like stroking boosts the immune system in mice. Sci. Rep. 2015, 5, 10913. [Google Scholar] [CrossRef]
- Chen, L.; Xu, A.; Yin, N.; Zhao, M.; Wang, Z.; Chen, T.; Gao, Y.; Chen, Z. Enhancement of immune cytokines and splenic CD4+ T cells by electroacupuncture at ST36 acupoint of SD rats. PLoS ONE 2017, 12, e0175568. [Google Scholar] [CrossRef] [PubMed]
- Rapaport, M.H.; Schettler, P.; Bresee, C. A preliminary study of the effects of repeated massage on hypothalamic-pituitary-adrenal and immune function in healthy individuals: A study of mechanisms of action and dosage. J. Altern. Complement. Med. 2012, 18, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Khiewkhern, S.; Promthet, S.; Sukprasert, A.; Eunhpinitpong, W.; Bradshaw, P. Effectiveness of aromatherapy with light thai massage for cellular immunity improvement in colorectal cancer patients receiving chemotherapy. Asian Pac. J. Cancer Prev. 2013, 14, 3903–3907. [Google Scholar] [CrossRef] [PubMed]
- Field, T. Massage therapy research review. Complement. Ther. Clin. Pract. 2016, 24, 19–31. [Google Scholar] [CrossRef]
Parameters | Baseline (Mean ± SD, Range) | Reference Value |
---|---|---|
Number of samples (n) | 12 | |
Gender (female/male) | 9/3 | |
Age | 67.7 ± 5.12 (61–75) | |
Blood pressure with range | ||
Systolic (mmHg) | 131.1 ± 10.8 (108–143) * | 80–120 |
Diastolic (mmHg) | 73.9 ± 10.2 (57–94) | 60–80 |
Pulse rate | 72.3 ± 7.7 (61–87) | 80–100 |
HbA1c (NGSP), % | 7.2 ± 2.4 * | 4.6–6.2 |
Creatinine (mg/dL) | 0.9 ± 0.2 | 0.5–1.5 |
ALT (U/L) | 25.3 ± 13.0 | 4–36 |
Lipid profiles | ||
- TC (mg/dL) | 217.3 ± 25.9 * | <200 |
- TG (mg/dL) | 198.8 ± 175.0 * | <150 |
- HDL-C (mg/dL) | 39.0 ± 15.2 * | >40 |
- LDL-C (mg/dL) | 138.9 ± 33.5 * | <100 |
Senescent CD4+ T cell subsets (%) at baseline | ||
- CD4+28null | 7.4 ± 4.6 (1.8–17.7) | |
- CD4+NKG2D+ | 1.4 ± 1.2 (0.3–4.4) | |
- CD4+28+NKG2D+ | 1.3 ± 1.4 (0.4–5.0) | |
- CD4+28nullNKG2D+ | 4.4 ± 4.3 (0.5–12.6) |
Parameters | Resting Group (n = 12) | TTM Group (n = 12) | Group × Time # | ||
---|---|---|---|---|---|
Pre | Post | Pre | Post | p | |
CD4+ T cell subsets (%) | |||||
CD4+ | 22.8 ± 12.7 | 23.0 ± 11.2 | 28.4 ± 7.9 | 27.9 ± 9.5 | 0.960 |
CD4+28+ | 94.3 ± 3.1 | 93.0 ± 3.2 | 92.5 ± 3.7 | 94.9 ± 2.3 † | 0.035 |
CD4+28null | 6.0 ± 3.1 | 7.6 ± 3.7 | 8.0 ± 4.2 | 5.4 ± 2.2 † | 0.039 |
CD4+NKG2D+ | 1.0 ± 0.7 | 0.9 ± 0.5 | 1.6 ± 1.1 | 0.7 ± 0.3 † | 0.044 |
CD4+28+NKG2D+ | 0.8 ± 0.6 | 0.7 ± 0.4 | 1.3 ± 1.3 | 0.6 ± 0.4 † | 0.084 |
CD4+28nullNKG2D+ | 3.9 ± 3.0 | 3.3 ± 3.0 | 4.9 ± 4.2 | 2.4 ± 2.6 † | 0.006 |
High group of CD4+28nullNKG2D+ (n = 6) | 5.1 ± 3.3 | 5.1 ± 3.5 | 8.3 ± 3.1 * | 4.0 ± 2.9 † | <0.001 |
Variable | Δ Change between Pre- and Post-TTM | p | Effect Size | Power (1-β Err Prob) |
---|---|---|---|---|
Effect of multiple round TTM | ||||
CD4+ | 0.5 ± 1.6 | 0.866 | 0.33 | 0.17 |
CD4+28+ | 2.4 ± 1.4 | 0.016 † | 1.69 | 0.99 |
CD4+28null | 2.6 ± 2.0 | 0.023 † | 1.35 | 0.98 |
CD4+NKG2D+ | 0.9 ± 0.8 | 0.001 † | 1.18 | 0.96 |
CD4+28+NKG2D+ | 0.8 ± 0.9 | 0.012 † | 0.86 | 0.77 |
CD4+28nullNKG2D+ | 2.5 ± 1.7 | <0.001 † | 1.49 | 0.99 |
High group of CD4+28nullNKG2D+ (n = 6) | 4.4 ± 0.3 | <0.001 † | 17.6 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sornkayasit, K.; Jumnainsong, A.; Phoksawat, W.; Eungpinichpong, W.; Leelayuwat, C. Traditional Thai Massage Promoted Immunity in the Elderly via Attenuation of Senescent CD4+ T Cell Subsets: A Randomized Crossover Study. Int. J. Environ. Res. Public Health 2021, 18, 3210. https://doi.org/10.3390/ijerph18063210
Sornkayasit K, Jumnainsong A, Phoksawat W, Eungpinichpong W, Leelayuwat C. Traditional Thai Massage Promoted Immunity in the Elderly via Attenuation of Senescent CD4+ T Cell Subsets: A Randomized Crossover Study. International Journal of Environmental Research and Public Health. 2021; 18(6):3210. https://doi.org/10.3390/ijerph18063210
Chicago/Turabian StyleSornkayasit, Kanda, Amonrat Jumnainsong, Wisitsak Phoksawat, Wichai Eungpinichpong, and Chanvit Leelayuwat. 2021. "Traditional Thai Massage Promoted Immunity in the Elderly via Attenuation of Senescent CD4+ T Cell Subsets: A Randomized Crossover Study" International Journal of Environmental Research and Public Health 18, no. 6: 3210. https://doi.org/10.3390/ijerph18063210
APA StyleSornkayasit, K., Jumnainsong, A., Phoksawat, W., Eungpinichpong, W., & Leelayuwat, C. (2021). Traditional Thai Massage Promoted Immunity in the Elderly via Attenuation of Senescent CD4+ T Cell Subsets: A Randomized Crossover Study. International Journal of Environmental Research and Public Health, 18(6), 3210. https://doi.org/10.3390/ijerph18063210