Shock Index as a Predictor for Angiographic Hemostasis in Life-Threatening Traumatic Oronasal Bleeding
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dean, N.R.; Ledgard, J.P.; Katsaros, J. Massive hemorrhage in facial fracture patients: Definition, incidence, and management. Plast. Reconstr. Surg. 2009, 123, 680–690. [Google Scholar] [CrossRef]
- Liao, C.C.; Hsu, Y.P.; Chen, C.T.; Tseng, Y.Y. Transarterial embolization for intractable oronasal hemorrhage associated with craniofacial trauma: Evaluation of prognostic factors. J. Trauma Acute Care Surg. 2007, 63, 827–830. [Google Scholar] [CrossRef]
- Cogbill, T.H.; Cothren, C.C.; Ahearn, M.K.; Cullinane, D.C.; Kaups, K.L.; Scalea, T.M. Management of maxillofacial injuries with severe oronasal hemorrhage: A multicenter perspective. J. Trauma Acute Care Surg. 2008, 65, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Bynoe, R.P.; Kerwin, A.J.; Parker, H.H.; Nottingham, J.M.; Bell, R.M.; Yost, M.J. Maxillofacial injuries and life-threatening hemorrhage: Treatment with transcatheter arterial embolization. J. Trauma Acute Care Surg. 2003, 55, 74–79. [Google Scholar] [CrossRef]
- Shimoyama, T.; Kaneko, T.; Horie, N. Initial management of massive oral bleeding after midfacial fracture. J. Trauma Acute Care Surg. 2003, 54, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Dagum, A.B. A critical review of the literature and an evidence-based approach for life-threatening hemorrhage in maxillofacial surgery. Ann. Plast. Surg. 2012, 69, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.C.; Tseng, Y.Y.; Chen, C.T. Transarterial embolisation for intractable post- traumatic oronasal haemorrhage following traumatic brain injury: Evaluation of prognostic factors. Injury 2008, 39, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Singam, P.; Thanabalan, J.; Mohammed, Z. Superselective embolisation for control of intractable epistaxis from maxillary artery injury. Biomed. Imaging Interv. J. 2011, 7, e3. [Google Scholar]
- Perry, M.; Dancey, A.; Mireskandari, K.; Oakley, P.; Davies, S.; Cameron, M. Emergency care in facial trauma-a maxillofacial and ophthalmic perspective. Injury 2005, 36, 875–896. [Google Scholar] [CrossRef]
- Komiyama, M.; Nishikawa, M.; Kan, M.; Shigemoto, T.; Kaji, A. Endovascular treatment of intractable oronasal bleeding associated with severe craniofacial injury. J. Trauma Acute Care Surg. 1998, 44, 330–334. [Google Scholar] [CrossRef]
- Salsamendi, J.T.; Gortes, F.J.; Ayala, A.R.; Palacios, J.D.; Tewari, S.; Narayanan, G. Transarterial embolization of a hyperfunctioning aldosteronoma in a patient with bilateral adrenal nodules. Radiol. Case Rep. 2017, 12, 87–91. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tawfik, K.O.; Harmon, J.J.; Walters, Z.; Samy, R.; de Alarcon, A.; Stevens, S.M. Facial Palsy Following Embolization of a Juvenile Nasopharyngeal Angiofibroma. Ann. Otol. Rhinol. Laryngol. 2018, 127, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Willems, P.; Farb, R.; Agid, R. Endovascular treatment of epistaxis. Am. J. Neuroradiol. 2009, 30, 1637–1645. [Google Scholar] [CrossRef]
- Tung, T.C.; Tseng, W.S.; Chen, C.T.; Lai, J.P.; Chen, Y.R. Acute life-threatening injuries in facial fracture patients: A review of 1025 patients. J. Trauma Acute Care Surg. 2000, 49, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Scaramuzzi, N.; Walsh, R.; Brennan, P.; Walsh, M. Treatment of intractable epistaxis using arterial embolization. Clin. Otolaryngol. Allied Sci. 2001, 26, 307–309. [Google Scholar] [CrossRef]
- Ho, K.; Hutter, J.J.; Eskridge, J.; Khan, U.; Boorer, C.J.; Hopper, R.A. The management of life-threatening haemorrhage following blunt facial trauma. J. Plast. Reconstr. Aesthetic Surg. 2006, 59, 1257–1262. [Google Scholar] [CrossRef]
- Bouloux, G.F.; Perciaccante, V.J. Massive hemorrhage during oral and maxillofacial surgery: Ligation of the external carotid artery or embolization? J. Oral Maxillofac. Surg. 2009, 67, 1547–1551. [Google Scholar] [CrossRef]
- Bachar, G.; Esmat, N.; Stern, S.; Litvin, S.; Knizhnik, M.; Perlow, E. Transarterial embolization for acute head and neck bleeding: Eight-Year experience with emphasis on rebleeding risk in cancer patients. Laryngoscope 2013, 123, 1220–1226. [Google Scholar] [CrossRef]
- Wiratama, B.Y.; Chen, P.L.; Chao, C.J.; Wang, M.H.; Saleh, W.; Lin, H.A.; Pai, C.W. Effect of Distance to Trauma Centre, Trauma Centre level, and Trauma Centre Region on Fatal Injuries among Motorcyclists in Taiwan. Int. J. Environ. Res. Public Health 2021, 18, 2998. [Google Scholar] [CrossRef]
- Malone, D.L.; Dunne, J.; Tracy, J.K.; Putnam, A.T.; Scalea, T.M.; Napolitano, L.M. Blood transfusion, independent of shock severity, is associated with worse outcome in trauma. J. Trauma Acute Care Surg. 2003, 54, 898–907. [Google Scholar] [CrossRef]
- Birkhahn, R.H.; Gaeta, T.J.; Terry, D.; Bove, J.J.; Tloczkowski, J. Shock index in diagnosing early acute hypovolemia. Am. J. Emerg. Med. 2005, 23, 323–326. [Google Scholar] [CrossRef]
- DeMuro, J.P.; Simmons, S.; Jax, J.; Gianelli, S.M. Application of the Shock Index to the prediction of need for hemostasis intervention. Am. J. Emerg. Med. 2013, 31, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.H.; Rau, C.S.; Hsu, S.Y.; Wu, S.C.; Kuo, P.J.; Hsieh, H.Y.; Chen, Y.C.; Hsieh, C.H. Using the Reverse Shock Index at the Injury Scene and in the Emergency Department to Identify High-Risk Patients: A Cross-Sectional Retrospective Study. Int. J. Environ. Res. Public Health 2016, 13, 357. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.C.; Rau, C.Y.; Kuo, S.C.H.; Chien, P.C.; Hiseh, H.Y.; Hsieh, C.H. The Reverse Shock Index Multiplied by Glasgow Coma Scale Score (rSIG) and Prediction of Mortality Outcome in Adult Trauma Patients: A Cross-Sectional Analysis Based on Registered Trauma Data. Int. J. Environ. Res. Public Health 2018, 15, 2346. [Google Scholar] [CrossRef]
- Vandromme, M.J.; Griffin, R.L.; McGwin, G.; Weinberg, J.A.; Rue, L.W.; Kerby, J.D. Prospective identification of patients at risk for massive transfusion: An imprecise endeavor. Am. Surg. 2011, 77, 155–161. [Google Scholar] [CrossRef]
- Mutschler, M.; Nienaber, U.; Münzberg, M.; Wölfl, C.; Schoechl, H.; Paffrath, T. The Shock Index revisited—A fast guide to transfusion requirement? A retrospective analysis on 21,853 patients derived from the TraumaRegister DGU®. Crit. Care 2013, 17, R172. [Google Scholar] [CrossRef] [PubMed]
- Rau, C.S.; Wu, S.C.; Kuo, S.C.H.; Kuo, P.J.; Hsu, S.Y.; Chen, Y.C.; Hsieh, H.Y.; Hsieh, C.H.; Liu, H.T. Prediction of Massive Transfusion in Trauma Patients with Shock Index, Modified Shock Index, and Age Shock Index. Int. J. Environ. Res. Public Health 2016, 13, 683. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.C.; Rau, C.S.; Kuo, P.J.; Liu, H.T.; Hsu, S.Y.; Hsieh, C.H. Significance of Blood Transfusion Units in Determining the Probability of Mortality among Elderly Trauma Patients Based on the Geriatric Trauma Outcome Scoring System: A Cross-Sectional Analysis Based on Trauma Registered Data. Int. J. Environ. Res. Public Health 2018, 15, 2285. [Google Scholar] [CrossRef] [PubMed]
- Nakasone, Y.; Ikeda, O.; Yamashita, Y.; Kudoh, K.; Shigematsu, Y.; Harada, K. Shock index correlates with extravasation on angiographs of gastrointestinal hemorrhage: A logistics regression analysis. Cardiovasc. Interv. Radiol. 2007, 30, 861–865. [Google Scholar] [CrossRef]
- Kuo, L.W.; Yang, S.J.; Fu, C.Y.; Liao, C.H.; Wang, S.Y.; Wu, S.C. Relative hypotension increases the probability of the need for angioembolisation in pelvic fracture patients without contrast extravasation on computed tomography scan. Injury 2016, 47, 37–42. [Google Scholar] [CrossRef]
- Cole, E.; Weaver, A.; Gall, L.; West, A.; Nevin, D.; Tallach, R.; O’Neill, B.; Lahiri, S.; Allard, S.; Tai, N.; et al. A Decade of Damage Control Resuscitation: New Transfusion Practice, New Survivors, New Directions. Ann. Surg. 2021, 273, 1215–1220. [Google Scholar] [CrossRef]
- MacLeod, J.B.A.; Lynn, M.; McKenney, M.G.; Cohn, S.M.; Murtha, M. Early coagulopathy predicts mortality in trauma. J. Trauma 2003, 55, 39–44. [Google Scholar] [CrossRef]
- Kornblith, L.Z.; Moore, H.B.; Cohen, M.J. Trauma-induced coagulopathy: The past, present, and future. J. Thromb. Haemost. 2019, 17, 852–862. [Google Scholar] [CrossRef]
- Holcomb, J.B.; Tilley, B.C.; Baraniuk, S.; Fox, E.E.; Wade, C.E.; Podbielski, J.M.; del Junco, D.J.; Brasel, K.J.; Bulger, E.M.; Callcut, R.A.; et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs. a 1:1:2 ratio and mortality in patients with severe trauma: The PROPPR randomized clinical trial. JAMA 2015, 313, 471–482. [Google Scholar] [CrossRef]
- Moore, E.E.; Moore, H.B.; Kornblith, L.Z.; Neal, M.D.; Hoffman, M.; Mutch, N.J.; Schöchl, H.; Hunt, B.J.; Sauaia, A. Trauma-induced coagulopathy. Nat. Rev. Dis. Primers 2021, 7, 30. [Google Scholar] [CrossRef]
- Christie, S.A.; Kornblith, L.Z.; Howard, B.M.; Conroy, A.S.; Kunitake, R.C.; Nelson, M.F.; Hendrickson, C.M.; Calfee, C.S.; Callcut, R.A.; Cohen, M.J. Characterization of distinct coagulopathic phenotypes in injury: Pathway-specific drivers and implications for individualized treatment. J. Trauma Acute Care Surg. 2017, 82, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Kerby, J.D.; Kalkwarf, K.J.; Van Belle, G.; Fox, E.E.; Cotton, B.A.; Cohen, M.J.; Schreiber, M.A.; Brasel, K.J.; Bulger, E.M.; et al. Earlier time to hemostasis is associated with decreased mortality and rate of complications: Results from the Pragmatic Randomized Optimal Platelet and Plasma Ratio trial. J. Trauma Acute Care Surg. 2019, 87, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Maegele, M.; Schöchl, H.; Menovsky, T.; Maréchal, H.; Miklas, M.; Buki, A.; Stanworth, S. Coagulopathy and haemorrhagic progression in traumatic brain injury: Advances in mechanisms, diagnosis, and management. Lancet Neurol. 2017, 16, 630–647. [Google Scholar] [CrossRef]
- Böhm, J.K.; Gütin, H.; Thorn, S.; Schäfer, N.; Rambach, V.; Schöchl, H.; Grottke, O.; Rossaint, R.; Stanworth, S.; Nicola, C.; et al. Global Characterisation of Coagulopathy in Isolated Traumatic Brain Injury (iTBI): A CENTER-TBI Analysis. Neurocrit. Care 2021, 35, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Li, L.; Schäfer, N.; Huang, Q.; Maegele, M.; Gu, Z. Endothelial glycocalyx in traumatic brain injury associated coagulopathy: Potential mechanisms and impact. J. NeuroInflamm. 2021, 14, 134. [Google Scholar] [CrossRef] [PubMed]
- Soyka, M.B.; Nikolaou, G.; Rufibach, K.; Holzmann, D. On the effectiveness of treatment options in epistaxis: An analysis of 678 interventions. Rhinology 2011, 49, 474–478. [Google Scholar] [CrossRef]
- Lee, Y.H.; Wu, C.; Wang, L.J.; Wong, Y.C.; Chen, H.W.; Wang, C.J. Predictive factors for early failure of transarterial embolization in blunt hepatic injury patients. Clin. Radiol. 2014, 69, e505–e511. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Yu, C.Y.; Chen, R.C.; Huang, G.S.; Liu, C.H.; Hsu, H.H. Transarterial treatment of acute gastrointestinal bleeding: Prediction of treatment failure by clinical and angiographic parameters. J. Chin. Med. Assoc. 2012, 75, 376–383. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vaidya, S.; Tozer, K.R.; Chen, J. An overview of embolic agents. Semin. Interv. Radiol. 2008, 25, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Leyon, J.J.; Littlehales, T.; Rangarajan, B.; Hoey, E.T.; Ganeshan, A. Endovascular embolization: Review of currently available embolization agents. Curr. Probl. Diagn. Radiol. 2014, 43, 35–53. [Google Scholar] [CrossRef]
- Dubel, G.J.; Ahn, S.H.; Soares, G.M. Transcatheter embolization in the management of epistaxis. Semin. Interv. Radiol. 2013, 30, 249–262. [Google Scholar]
Variables | TAE (n = 39) | Non-TAE (n = 11) | p Value |
---|---|---|---|
Age | 34.48 ± 19.41 | 38.54 ± 10.86 | 0.12 |
Mechanism | |||
MVA | 18 (46.2%) | 8 (72.7%) | 0.17 |
Pedestrian | 8 (20.5%) | 0 | - |
Fall | 7 (17.9%) | 2 (18.2%) | - |
Miscellaneous | 6 (15.4%) | 1 (9.1%) | - |
Other Injury | |||
CNS | 23 (58.9%) | 9 (81.82%) | 0.28 |
Chest | 15 (38.4%) | 5 (45.45%) | 0.73 |
Abdomen | 6 (15.3%) | 0 | - |
Pelvis | 5 (12.8%) | 0 | - |
Extremities | 7 (17.9%) | 2 (18.18%) | 0.31 |
Fracture | |||
LeFort II + III | 16 (41.0%) | 5 (45.4%) | 1 |
NOE | 2 (5.1%) | 2 (18.2%) | 0.30 |
ZMC | 4 (10.2%) | 4 (36.4%) | 0.05 |
Nasal | 2 (5.1%) | 0 | - |
Mandible | 1 (2.5%) | 1 (9.1%) | 0.39 |
Vitals | |||
SBP | 107.12 ± 35.74 | 136.81 ± 27.53 | <0.05 * |
HR | 126.84 ± 25.36 | 98.18 ± 24.28 | <0.05 * |
Initial SI | 1.31 ± 0.49 | 0.73 ± 0.17 | <0.05 * |
SI (after nasal packing) | 1.14 ± 0.37 | 0.74 ± 0.23 | <0.05 * |
SI (after TAE) | 0.9 ± 0.31 | - | - |
GCS | 8.17 ± 4.62 | 7.63 ± 3.72 | 0.99 |
Laboratory Studies | |||
Hematocrit (%) | 32.6 ± 8.6 | 34.8 ± 9 | 0.23 |
INR | 1.84 ± 0.95 | 1.17 ± 0.14 | 0.042 * |
Platelet (×103/μL) | 162.4 ± 66.9 | 213 ± 53.9 | 0.037 * |
Blood Transfusion | |||
pRBC | 6.6 ± 5 | 2.9 ± 3.2 | <0.05 * |
WB | 1.4 ± 2.9 | 0.9 ± 2.1 | 0.77 |
FFP | 3.1 ± 4.3 | 1.5 ± 2.6 | 0.2 |
ISS | 28.72 ± 10.71 | 24.54 ± 11.30 | 0.32 |
LOS | 6.61 ± 5.00 | 2.54 ± 3.35 | 1 |
Variables | Rebleeding (n = 7) | No Rebleeding (n = 32) | p Value |
---|---|---|---|
Fracture | |||
LeFort II + III | 3 | 13 | 0.08 |
NOE | 0 | 2 | - |
ZMC | 1 | 3 | 0.56 |
Nasal | 0 | 2 | - |
Mandible | 0 | 1 | - |
Material | |||
Coils | 1 | 4 | 0.96 |
Gelfoam | 3 | 26 | 0.05 |
NBCA | 2 | 3 | 0.21 |
PVA | 0 | 2 | - |
Bleeder | |||
IMA | 7 | 24 | 0.07 |
Facial | 0 | 5 | - |
ECA | 0 | 3 | - |
Lingual | 0 | 2 | - |
Sphenopalatine | 0 | 1 | - |
Ascending pharyngeal | 0 | 1 | - |
TAE | |||
Extravasation | 6 | 23 | 0.56 |
Pseudoaneurysm | 5 | 11 | 0.1 |
SI | 1.38 ± 0.72 | 1.30 ± 0.43 | 0.98 |
ISS | 26.28 ± 11.28 | 29.38 ± 10.69 | 0.52 |
LOS | 30.2 ± 12.37 | 21.96 ± 15.72 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, F.-Y.; Mao, S.-H.; Chuang, A.D.-C.; Wong, Y.-C.; Chen, C.-H. Shock Index as a Predictor for Angiographic Hemostasis in Life-Threatening Traumatic Oronasal Bleeding. Int. J. Environ. Res. Public Health 2021, 18, 11051. https://doi.org/10.3390/ijerph182111051
Hsu F-Y, Mao S-H, Chuang AD-C, Wong Y-C, Chen C-H. Shock Index as a Predictor for Angiographic Hemostasis in Life-Threatening Traumatic Oronasal Bleeding. International Journal of Environmental Research and Public Health. 2021; 18(21):11051. https://doi.org/10.3390/ijerph182111051
Chicago/Turabian StyleHsu, Fang-Yu, Shih-Hsuan Mao, Andy Deng-Chi Chuang, Yon-Cheong Wong, and Chih-Hao Chen. 2021. "Shock Index as a Predictor for Angiographic Hemostasis in Life-Threatening Traumatic Oronasal Bleeding" International Journal of Environmental Research and Public Health 18, no. 21: 11051. https://doi.org/10.3390/ijerph182111051
APA StyleHsu, F.-Y., Mao, S.-H., Chuang, A. D.-C., Wong, Y.-C., & Chen, C.-H. (2021). Shock Index as a Predictor for Angiographic Hemostasis in Life-Threatening Traumatic Oronasal Bleeding. International Journal of Environmental Research and Public Health, 18(21), 11051. https://doi.org/10.3390/ijerph182111051