A Low-Cost, High-Throughput Digital Image Analysis of Stain Patterns on Smoked Cigarette Filter Butts to Estimate Mainstream Smoke Exposure
Abstract
1. Introduction
2. Materials and Methods
2.1. Cigarette Styles Analyzed
2.2. Correlating Filter-Stain Patterns with Mainstream Smoke Deliveries
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. Smoking Cessation: A Report of the Surgeon General. In The Chemical Components of Tobacco and Tobacco Smoke, 2nd ed.; Rodgman, A., Perfetti, T.A., Eds.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9781466515482. [Google Scholar]
- Fisher, R. Cigarettes, Cancer, and Stastics; The Centennial Review of Arts & Science; Michigan State University Press: East Lansing, MI, USA, 1958; Volume 2, pp. 151–166. Available online: https://www.jstor.org/stable/23737529 (accessed on 25 June 2021).
- Mitacek, E.J.; Brunnemann, K.D.; Hoffmann, D.; Limsila, T.; Suttajit, M.; Martin, N.; Caplan, L.S. Volatile nitrosamines and tobacco-specific nitrosamines in the smoke of Thai cigarettes: A risk factor for lung cancer and a suspected risk factor for liver cancer in Thailand. Carcinogenesis 1999, 20, 133–137. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Proctor, R.N. The history of the discovery of the cigarette—lung cancer link: Evidentiary traditions, corporate denial, global toll. Tob. Control. 2012, 21, 87–91. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. List of Classifications by Cancer Sites with Sufficient or Limited Evidence in Humans; Iarc Monographs; World Health Organization: Lyon, France, 2020; Volume 1–128. [Google Scholar]
- Jarvis, M.J.; Boreham, R.; Primatesta, P.; Feyerabend, C.; Bryant, A. Nicotine Yield From Machine-Smoked Cigarettes and Nicotine Intakes in Smokers: Evidence From a Representative Population Survey. JNCI J. Natl. Cancer Inst. 2001, 93, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Woodward, M.; Tunstall-Pedoe, H. Self-titration of nicotine: Evidence from the Scottish Heart Health Study. Addiction 1993, 88, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Gori, G.B.; Lynch, C.J. Analytical cigarette yields as predictors of smoke bioavailability. Regul. Toxicol. Pharmacol. 1985, 5, 314–326. [Google Scholar] [CrossRef]
- Parish, S.; Collins, R.; Peto, R.; Youngman, L.; Barton, J.; Jayne, K.; Clarke, R.; Appleby, P.; Lyon, V.; Cederholm-Williams, S.; et al. Cigarette smoking, tar yields, and non-fatal myocardial infarction: 14,000 cases and 32,000 controls in the United Kingdom. BMJ 1995, 311, 471. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, L.T.; O’Connor, R.J. Cigarette filter ventilation is a defective design because of misleading taste, bigger puffs, and blocked vents. Tob. Control. 2002, 11, i40–i50. [Google Scholar] [CrossRef]
- Sweeney, C.T.; Kozlowski, L.T.; Parsa, P. Effect of Filter Vent Blocking on Carbon Monoxide Exposure From Selected Lower Tar Cigarette Brands. Pharmacol. Biochem. Behav. 1999, 63, 167–173. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Jacob, P.; Yu, L.; Talcott, R.; Hall, S.; Jones, R.T. Reduced Tar, Nicotine, and Carbon Monoxide Exposure While Smoking Ultralow- but Not Low-Yield Cigarettes. JAMA 1986, 256, 241–246. [Google Scholar] [CrossRef]
- Petitti, D.B.; Friedman, G.D.; Kahn, W. Accuracy of information on smoking habits provided on self-administered research questionnaires. Am. J. Public Health 1981, 71, 308–311. [Google Scholar] [CrossRef]
- Strasser, A.A.; Ashare, R.L.; Kozlowski, L.T.; Pickworth, W.B. The effect of filter vent blocking and smoking topography on carbon monoxide levels in smokers. Pharmacol. Biochem. Behav. 2005, 82, 320–329. [Google Scholar] [CrossRef]
- Xia, B.; Blount, B.C.; Guillot, T.; Brosius, C.; Li, Y.; Van Bemmel, D.M.; Kimmel, H.L.; Chang, C.M.; Borek, N.; Edwards, K.C.; et al. Tobacco-Specific Nitrosamines (NNAL, NNN, NAT, and NAB) Exposures in the US Population Assessment of Tobacco and Health (PATH) Study Wave 1 (2013–2014). Nicotine Tob. Res. 2021, 23, 573–583. [Google Scholar] [CrossRef]
- StHelen, G.; Novalen, M.; Heitjan, D.F.; Dempsey, D.; Jacob, I.I.I.P.; Aziziyeh, A.; Wing, V.C.; George, T.P.; Tyndale, R.F.; Benowitz, N.L. Reproducibility of the Nicotine Metabolite Ratio in Cigarette Smokers. Cancer Epidemiol. Prev. Biomark. 2012, 21, 1105–1114. [Google Scholar] [CrossRef]
- Marian, C.; O’Connor, R.J.; Djordjevic, M.V.; Rees, V.W.; Hatsukami, D.K.; Shields, P.G. Reconciling Human Smoking Behavior and Machine Smoking Patterns: Implications for Understanding Smoking Behavior and the Impact on Laboratory Studies. Cancer Epidemiol. Prev. Biomark. 2009, 18, 3305–3320. [Google Scholar] [CrossRef] [PubMed]
- Caraballo, R.S.; Giovino, G.A.; Pechacek, T.F.; Mowery, P.D. Factors Associated with Discrepancies between Self-Reports on Cigarette Smoking and Measured Serum Cotinine Levels among Persons Aged 17 Years or Older: Third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Epidemiol. 2001, 153, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Kischkel, S.; Miekisch, W.; Sawacki, A.; Straker, E.M.; Trefz, P.; Amann, A.; Schubert, J.K. Breath biomarkers for lung cancer detection and assessment of smoking related effects—Confounding variables, influence of normalization and statistical algorithms. Clin. Chim. Acta 2010, 411, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.H.; McCraw, J.; Polzin, G.M.; Ashley, D.L. Development of a Method to Assess Cigarette Smoke Intake. Env. Sci. Tech. 2004, 38, 248–253. [Google Scholar] [CrossRef]
- Polzin, G.M.; Wu, W.; Yan, X.; McCraw, J.M.; Abdul-Salaam, S.; Tavakoli, A.D.; Zhang, L.; Ashley, D.L.; Watson, C.H. Estimating smokers’ mouth level exposure to select mainstream smoke constituents from discarded cigarette filter butts. Nicotine Tob. Res. 2009, 11, 868–874. [Google Scholar] [CrossRef]
- Bravo-Cardenas, R.; Ngac, P.; Watson, C.H.; Valentin-Blasini, L. Determination of Free Solanesol Levels in Cigarette Filters by Liquid Chromatography—Mass Spectrometry. J. Anal. Toxicol. 2021. [Google Scholar] [CrossRef]
- O’Connor, R.J.; Stitt, J.P.; Kozlowski, L.T. A Digital Image Analysis System for Identifying Filter Vent Blocking on Ultralight Cigarettes. Canr. Epidemiol. Biomark. Prev. 2005, 14, 533–537. [Google Scholar] [CrossRef][Green Version]
- Shepperd, C.J.; St Charles, F.K.; Lien, M.; Dixon, M. Validation of methods for determining consumer smoked cigarette yields from cigarette filter analysis. Beitr. Tabforsch. Int. 2006, 22, 176–184. [Google Scholar] [CrossRef]
- St Charles, F.K.; Krautter, G.R.; Dixon, M.; Mariner, D.C. A comparison of nicotine dose estimates in smokers between filter analysis, salivary cotinine, and urinary excretion of nicotine metabolites. Psychopharmacology 2006, 189, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Strasser, A.A.; O’Connor, R.J.; Mooney, M.E.; Wileyto, E.P. Digital Image Analysis of Cigarette Filter Stains as an Indicator of Compensatory Smoking. Cancer Epidemiol. Prev. Biomark. 2006, 15, 2565–2569. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, R.J.; Vance, T.T.; Cummings, K.M.; Kozlowski, L.T.; Hammond, D.; Stitt, J.P. (2—7_ Digital Image Analysis of Cigarette Filter Staining to Estimate Smoke Exposure. Nicotine Tob. Res. 2007, 9, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Pauly, J.L.; O’Connor, R.J.; Paszkiewicz, G.M.; Cummings, K.M.; Djordjevic, M.V.; Shields, P.G. Cigarette Filter–based Assays as Proxies for Toxicant Exposure and Smoking Behavior—A Literature Review. Cancer Epidemiol. Biomark. Prev 2009, 18, 3321–3333. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.S.; Chou, T.; Abdul-Salaam, S.; Hearn, B.; Watson, C.H. Development of a Method to Estimate Mouth-Level Benzo[a]pyrene Intake by Filter Analysis. Cancer Epidemiol. Prev. Biomark. 2012, 21, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhang, Z.; Hearn, B.A.; Valentin-Blasini, L.; Polzin, G.M.; Watson, C.H. A High Throughput Method for Estimating Mouth-Level Intake of Mainstream Cigarette Smoke Nicotine. Tob. Res. 2015, 17, 1324–1330. [Google Scholar] [CrossRef]
- Ashley, D.L.; O’Connor, R.J.; Bernert, J.T.; Watson, C.H.; Polzin, G.M.; Jain, R.B.; Hammond, D.; Hatsukami, D.K.; Giovino, G.A.; Cummings, K.M.; et al. Effect of differing levels of tobacco-specific nitrosamines in cigarette smoke on the levels of biomarkers in smokers. Cancer Epidemiol. Prev. Biomark. 2010, 19, 1389–1398. [Google Scholar] [CrossRef]
- Watson, C.V.; Richter, P.; de Castro, R.; Sosnoff, C.; Potts, J.; Clark, P.; McCraw, J.; Yan, X.; Chambers, D.; Watson, C.H. Smoking Behavior and Exposure: Results of a Menthol Cigarette Cross-over Study. Am. J. Health Behav. 2017, 41, 309–319. [Google Scholar] [CrossRef]
- Watson, C.V.; Patricia, P.; Li, Y.; Phillips, T.; Pickworth, W.B.; de Castro, R.B.; Potts, J.; Watson, C.H. Mouth Level Nicotine in a Clinical Setting versus Non-clinical Setting. Tob. Reg. Sci. 2019, 5, 229–241. [Google Scholar] [CrossRef]
- Smith, T.T.; Koopmeiners, J.S.; Hatsukami, D.K.; Tessier, K.N.; Benowitz, N.L.; Murphy, S.E.; Strasser, A.A.; Tidey, J.W.; Blount, B.C.; Valentin, L.; et al. Mouth-Level Nicotine Intake Estimates from Discarded Filter Butts to Examine Compensatory Smoking in Low Nicotine Cigarettes. Cancer Epidemiol. Prev. Biomark. 2020, 29, 643–649. [Google Scholar] [CrossRef]
- Smith, T.T.; Koopmeiners, J.S.; White, C.M.; Denlinger-Apte, R.L.; Pacek, L.R.; De Jesús, V.R.; Wang, L.; Watson, C.H.; Blount, B.C.; Hatsukami, D.K.; et al. The Impact of Exclusive Use of Very Low Nicotine Cigarettes on Compensatory Smoking: An Inpatient Crossover Clinical Trial. Cancer Epidemiol. Prev. Biomark. 2020, 29, 880–886. [Google Scholar] [CrossRef]
- Calafat, A.M.; Polzin, G.; Saylor, J.; Richter, P.; Ashley, D.L.; Watson, C.H. Determination of tar, nicotine, and carbon monoxide yields in the mainstream smoke of selected international cigarettes. Tob. Control. 2004, 13, 45–51. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, L.; Ashley, D.L.; Watson, C.H. Determination of Tobacco-specific nitrosamines in mainstream smoke from U.S. brand and non-U.S. brand cigarettes. Nicotine Tob. Res. 2005, 7, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Mansournia, M.A.; Waters, R.; Nazemipour, M.; Bland, M.; Altman, D.G. Bland-Altman methods for comparing methods of measurement and response to criticisms. Glob. Epidemiol. 2020, 3, 100045. [Google Scholar] [CrossRef]
- Morton, M.J.; Williams, D.L.; Hjorth, H.B.; Smith, J.M. Machine-smoking studies of cigarette filter color to estimate tar yield by visual assessment and through the use of a colorimeter. Regul. Toxicol. Pharmacol. 2009, 56, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Shiffman, S.; Mao, J.M.; Kurland, B.F.; School, S.M. Do non-daily smokers compensate for reduced cigarette consumption when smoking very-low-nicotine-content cigarettes? Psychopharmacology 2018, 235, 3435–3441. [Google Scholar] [CrossRef]
- Jain, R. Trends in serum cotinine concentrations among daily cigarette smokers: Data from NHANES 1999–2010. Sci. Total Environ. 2014, 472, 72–77. [Google Scholar] [CrossRef]
Nicotine | NNK 1 | |||
---|---|---|---|---|
Luminosity | Solanesol | Luminosity | Solanesol | |
R2 | 0.905 | 0.893 | 0.831 | 0.842 |
Stdev | 0.050 | 0.079 | 0.169 | 0.100 |
RSD (%) | 5.6 | 8.9 | 20.4 | 11.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watson, C.H.; Yan, J.; Stanfill, S.; Valentin-Blasini, L.; Bravo Cardenas, R.; Blount, B.C. A Low-Cost, High-Throughput Digital Image Analysis of Stain Patterns on Smoked Cigarette Filter Butts to Estimate Mainstream Smoke Exposure. Int. J. Environ. Res. Public Health 2021, 18, 10546. https://doi.org/10.3390/ijerph181910546
Watson CH, Yan J, Stanfill S, Valentin-Blasini L, Bravo Cardenas R, Blount BC. A Low-Cost, High-Throughput Digital Image Analysis of Stain Patterns on Smoked Cigarette Filter Butts to Estimate Mainstream Smoke Exposure. International Journal of Environmental Research and Public Health. 2021; 18(19):10546. https://doi.org/10.3390/ijerph181910546
Chicago/Turabian StyleWatson, Clifford H., Jane Yan, Stephen Stanfill, Liza Valentin-Blasini, Roberto Bravo Cardenas, and Benjamin C. Blount. 2021. "A Low-Cost, High-Throughput Digital Image Analysis of Stain Patterns on Smoked Cigarette Filter Butts to Estimate Mainstream Smoke Exposure" International Journal of Environmental Research and Public Health 18, no. 19: 10546. https://doi.org/10.3390/ijerph181910546
APA StyleWatson, C. H., Yan, J., Stanfill, S., Valentin-Blasini, L., Bravo Cardenas, R., & Blount, B. C. (2021). A Low-Cost, High-Throughput Digital Image Analysis of Stain Patterns on Smoked Cigarette Filter Butts to Estimate Mainstream Smoke Exposure. International Journal of Environmental Research and Public Health, 18(19), 10546. https://doi.org/10.3390/ijerph181910546