The Combined Process of Paper Filtration and Ultrafiltration for the Pretreatment of the Biogas Slurry from Swine Manure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biogas Slurry and Sample Testing Methods
2.2. Paper Filter and the Ultrafiltration Membrane
2.3. Experimental Procedures
2.3.1. Paper Filter Precision Identification
2.3.2. The Combined Process Treatment of the Pig Farm Biogas Slurry
2.4. Data Analysis Method
3. Results
3.1. Precision of Paper Filtration
3.2. The Combined Process of Optimized Paper Filtration and Ultrafiltration
3.2.1. Flux Rate of the Combined Process
3.2.2. Effects of the Combined Process on Water Quality
3.2.3. The Substance Flow and Distribution during the Combined Process
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Konieczny, K.; Kwiecińska, A.; Gworek, B. The recovery of water from slurry produced in high density livestock farming with the use of membrane processes. Sep. Purif. Technol. 2011, 80, 490–498. [Google Scholar] [CrossRef]
- Ruan, H.; Yang, Z.; Lin, J.; Shen, J.; Ji, J.; Gao, C.; Van der Bruggen, B. Biogas slurry concentration hybrid membrane process: Pilot-testing and ro membrane cleaning. Desalination 2015, 368, 171–180. [Google Scholar] [CrossRef]
- Jiang, X.; Sommer, S.G.; Christensen, K.V. A review of the biogas industry in china. Energy Policy 2011, 39, 6073–6081. [Google Scholar] [CrossRef]
- Ledda, C.; Schievano, A.; Salati, S.; Adani, F. Nitrogen and water recovery from animal slurries by a new integrated ultrafiltration, reverse osmosis and cold stripping process: A case study. Water Res. 2013, 47, 6157–6166. [Google Scholar] [CrossRef] [PubMed]
- Fangueiro, D.; Hjorth, M.; Gioelli, F. Acidification of animal slurry—A review. J. Environ. Manag. 2015, 149, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Li, Y.; Ladewig, B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regueiro, I.; Coutinho, J.; Fangueiro, D. Alternatives to sulfuric acid for slurry acidification: Impact on slurry composition and ammonia emissions during storage. J. Clean. Prod. 2016, 131, 296–307. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, H.; Wang, X.; Wang, D.; Duan, J.; Men, B. Influence of coagulation process on the ultrafiltration performance—The roles of al species and characteristics of algae-laden water. Sep. Purif. Technol. 2017, 183, 32–42. [Google Scholar] [CrossRef]
- Martinez, J.; Burton, C.H.; Sneath, R.W.; Farrent, J.W. A study of the potential contribution of sedimentation to aerobic treatment processes for pig slurry. J. Agric. Eng. Res. 1995, 61, 87–96. [Google Scholar] [CrossRef]
- Hailing, M.; Hongmin, D.; Zhiping, Z.; Lei, H. Influences of operation parameters on performance of MBR treating digested piggery wastewater. Trans. CSAE 2008. [Google Scholar] [CrossRef]
- Prado, N.; Ochoa, J.; Amrane, A. Zero nuisance piggeries: Long-term performance of mbr (membrane bioreactor) for dilute swine wastewater treatment using submerged membrane bioreactor in semi-industrial scale. Water Res. 2009, 43, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Stuckey, D.C. Recent developments in anaerobic membrane reactors. Bioresour. Technol. 2012, 122, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Carroll, Z.S.; Long, S.C.; Roa-Espinosa, A.; Runge, T. Centrifuge separation effect on bacterial indicator reduction in dairy manure. J. Environ. Manag. 2017, 191, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Popovic, O.; Gioelli, F.; Dinuccio, E.; Balsari, P. Improved pig slurry mechanical separation using chitosan and biochar. Biosyst. Eng. 2014, 127, 115–124. [Google Scholar] [CrossRef]
- Longlong, D.; Zhiye, Z.; Meng, W.; Bangxi, Z.; Guoxue, L. Research on comprehensive integration process and recycling technologies of biogas slurry. Trans. CSAE 2016, 32, 207–212. [Google Scholar]
- Guorui, X. The Research on Concentration Technology for Biogas Slurry Using Nanofiltration Membrane and Subsequent Development of Concentrated Biogas Slurry as Liquid Organic Fertilizer; Zhejiang University: Hangzhou, China, 2012. [Google Scholar]
- Masse, L.; Massé, D.I.; Pellerin, Y. The use of membranes for the treatment of manure: A critical literature review. Biosyst. Eng. 2007, 98, 371–380. [Google Scholar] [CrossRef]
- Waeger, F.; Delhaye, T.; Fuchs, W. The use of ceramic microfiltration and ultrafiltration membranes for particle removal from anaerobic digester effluents. Sep. Purif. Technol. 2010, 73, 271–278. [Google Scholar] [CrossRef]
- Caide, Y.; Hongmin, D.; Wanqin, Z.; Zhiping, Z.; Fubin, Y.; Yuanhang, Z. Experiment on purified effect of ceramic membrane for digested slurry. Trans. CSAE 2018, 34, 212–218. [Google Scholar]
- Ortega Sandoval, A.D.; Barbosa Brião, V.; Cartana Fernandes, V.M.; Hemkemeier, A.; Friedrich, M.T. Stormwater management by microfiltration and ultrafiltration treatment. J. Water Process Eng. 2017. [Google Scholar] [CrossRef]
- Abuzaid, N.S.; Bukhari, A.A.; Al-Hamouz, Z.M. Ground water coagulation using soluble stainless steel electrodes. Adv. Environ. Res. 2002, 6, 325–333. [Google Scholar] [CrossRef]
- Bartlett, M.; Bird, M.R.; Howell, J.A. An experimental study for the development of a qualitative membrane cleaning model. J. Membr. Sci. 1995, 105, 147–157. [Google Scholar] [CrossRef]
- Park, S.H.; Park, B.; Shon, H.K.; Kim, S. Modeling full-scale osmotic membrane bioreactor systems with high sludge retention and low salt concentration factor for wastewater reclamation. Bioresour. Technol. 2015, 190, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Ike, I.A.; Zhang, J.; Groth, A.; Orbell, J.D.; Duke, M. Effects of dissolution conditions on the properties of pvdf ultrafiltration membranes. Ultrason. Sonochem. 2017, 39, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Sandefur, H.N.; Asgharpour, M.; Mariott, J.; Gottberg, E.; Vaden, J.; Matlock, M.; Hestekin, J. Recovery of nutrients from swine wastewater using ultrafiltration: Applications for microalgae cultivation in photobioreactors. Ecol. Eng. 2016, 94, 75–81. [Google Scholar] [CrossRef]
- Waszak, M.; Gryta, M. The ultrafiltration ceramic membrane used for broth separation in membrane bioreactor. Chem. Eng. J. 2016, 305, 129–135. [Google Scholar] [CrossRef]
- Guerra, K.; Pellegrino, J.; Drewes, J.E. Impact of operating conditions on permeate flux and process economics for cross flow ceramic membrane ultrafiltration of surface water. Sep. Purif. Technol. 2012, 87, 47–53. [Google Scholar] [CrossRef]
- Masse, L.; Massé, D.I.; Beaudette, V.; Muir, M. Size distribution and composition of particles in raw and anaerobically digested swine manure. Trans. ASAE 2005, 48, 1943–1949. [Google Scholar] [CrossRef]
- Han, Z.; Wang, L.; Duan, L.; Zhu, S.; Ye, Z.; Yu, H. The electrocoagulation pretreatment of biogas digestion slurry from swine farm prior to nanofiltration concentration. Sep. Purif. Technol. 2015, 156, 817–826. [Google Scholar] [CrossRef]
- Dow Water, P.S. Filmtec™ Reverse Osmosis Membranes-Technical Manual. Available online: http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_095b/0901b8038095b91d.pdf?filepath=/609-00071.pdf&fromPage=GetDoc (accessed on 2 May 2018).
Component | Content (Means ± SD) |
---|---|
pH | 7.11 ± 0.23 |
EC (ms/cm) | 7.23 ± 0.16 |
Turbidity | 279.00 ± 29.88 |
COD (mg/L) | 852.33 ± 48.35 |
TN (mg/L) | 773.33 ± 18.86 |
NH3-N (mg/L) | 684.67 ± 15.17 |
TP (mg/L) | 40.65 ± 3.25 |
TSS (mg/L) | 628.00 ± 68.82 |
TS (mg/L) | 2889.33 ± 54.09 |
Component | Reference Methods |
---|---|
pH | Electrometric method (Five Go F2, Switzerland) |
EC (ms/cm) | Determination of conductivity ((Five Go F3, Switzerland) |
Turbidity | Nephelometric method (2100 P Hach, America) |
COD (mg/L) | Potassium dichromate method (HJ/T 399-2007, China) |
TN (mg/L) | Potassium persulfate oxidation method (HJ 636-2012, China) |
NH3-N (mg/L) | Salicylic acid hypochlorite spectrophotometry method (HJ 536-2009, China) |
TP (mg/L) | Ammonium molybdate spectrophotometric method (GB/T 11893-1989, China) |
TSS (mg/L) | Total suspended solids dried at 103–105 °C (GB/T 11901-1989, China) |
TS (mg/L) | Total Solids dried at 103–105 °C (GB/T 5750-2006, China) |
Parameter | Characteristic |
---|---|
Material | Polyvinylidene fluoride (PVDF) |
Surface Material | Rigid Polyvinyl chloride |
Pore feature (nm) | 10–100 |
Filtration area (m2) | 30 |
Filtration mode | Pressure Screening |
Max. pressure (bar) | 3 |
Max. temperature (°C) | 45 |
pH range | 2–10 |
Water Parameters | EC | Turbidity | COD | TN | NH3-N | TP | TSS | TS |
---|---|---|---|---|---|---|---|---|
p-value | 0.542 | 0.006 | 0.003 | 0.369 | 0.303 | 0.001 | 0.000 | 0.001 |
Water Parameters | pH | EC (ms/cm) | Turbidity (NTU) | COD (mg/L) | TN (mg/L) | NH3-N (mg/L) | TP (mg/L) | TSS (mg/L) | TS (mg/L) |
---|---|---|---|---|---|---|---|---|---|
The filtrate | 7.10 ± 0.10 | 7.20 ± 0.18 | 33.03 ± 7.48 | 658.67 ± 43.02 | 721.67 ± 16.50 | 649.67 ± 10.96 | 25.41 ± 1.63 | 193.33 ± 18.57 | 2101.33 ± 64.86 |
The ultrafiltration concentrate | 7.24 ± 0.13 | 7.24 ± 0.05 | 54.50 ± 9.85 | 731.67 ± 24.39 | 830.00 ± 14.14 | 720.33 ± 7.32 | 28.25 ± 2.24 | 254.67 ± 4.99 | 2061.33 ± 52.80 |
The ultrafiltration permeate | 7.19 ± 0.08 | 7.17 ± 0.07 | 11.56 ± 2.49 | 520.33 ± 9.98 | 715.00 ± 25.50 | 611.50 ± 8.03 | 7.83 ± 1.93 | 28.00 ± 8.64 | 1801.33 ± 1.89 |
The Substance Distribution | COD | TN | NH3-N | TP | TSS | TS | Volume (L) |
---|---|---|---|---|---|---|---|
The initial liquid (g) | 382.6 ± 30.9 | 346.47 ± 2.33 | 306.84 ± 7.48 | 18.03 ± 1.95 | 281.34 ± 30.61 | 1294.75 ± 19.8 | 448.75 ± 11.39 |
The filtrate (g) | 288.14 ± 26.49 | 315.03 ± 8.61 | 283.55 ± 3.55 | 10.94 ± 0.95 | 84.29 ± 7.22 | 917.47 ± 35.76 | 436.25 ± 10.83 |
The concentrate (g) | 42.66 ± 1.91 | 48.43 ± 2.47 | 42.04 ± 2.11 | 1.7 ± 0.13 | 14.87 ± 0.87 | 120.36 ± 7.73 | 57.50 ± 2.50 |
The permeate (g) | 192.6 ± 9.14 | 264.33 ± 6.94 | 226.29 ± 8.98 | 2.85 ± 0.76 | 10.34 ± 3.17 | 666.51 ± 22.68 | 370.00 ± 10.61 |
The proportions in the filtrate (%) | 75.3 ± 3.45 | 90.93 ± 2.38 | 92.44 ± 1.27 | 60.83 ± 1.28 | 30.04 ± 0.77 | 70.84 ± 1.69 | 97.22 ± 0.54 |
The proportions in the concentrate (%) | 11.24 ± 1.13 | 13.98 ± 0.8 | 13.72 ± 1.01 | 9.43 ± 0.27 | 5.32 ± 0.4 | 9.3 ± 0.65 | 12.83 ± 0.79 |
The proportions in the permeate (%) | 50.49 ± 2.07 | 76.29 ± 2.04 | 73.74 ± 2.1 | 15.54 ± 2.53 | 3.6 ± 0.7 | 51.48 ± 1.46 | 82.45 ± 0.85 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, Y.; Dong, H.; Yin, F.; Yue, C. The Combined Process of Paper Filtration and Ultrafiltration for the Pretreatment of the Biogas Slurry from Swine Manure. Int. J. Environ. Res. Public Health 2018, 15, 1894. https://doi.org/10.3390/ijerph15091894
Zhan Y, Dong H, Yin F, Yue C. The Combined Process of Paper Filtration and Ultrafiltration for the Pretreatment of the Biogas Slurry from Swine Manure. International Journal of Environmental Research and Public Health. 2018; 15(9):1894. https://doi.org/10.3390/ijerph15091894
Chicago/Turabian StyleZhan, Yuanhang, Hongmin Dong, Fubin Yin, and Caide Yue. 2018. "The Combined Process of Paper Filtration and Ultrafiltration for the Pretreatment of the Biogas Slurry from Swine Manure" International Journal of Environmental Research and Public Health 15, no. 9: 1894. https://doi.org/10.3390/ijerph15091894
APA StyleZhan, Y., Dong, H., Yin, F., & Yue, C. (2018). The Combined Process of Paper Filtration and Ultrafiltration for the Pretreatment of the Biogas Slurry from Swine Manure. International Journal of Environmental Research and Public Health, 15(9), 1894. https://doi.org/10.3390/ijerph15091894