Molecular Mechanism of Anti-Inflammatory Activities of a Novel Sulfated Galactofucan from Saccharina japonica
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties of Polysaccharide Fractions Isolated from S. japonica
2.2. Structural Feature of LJNF3
2.3. Cell Viability and NO Production to LJNF
2.4. Effect of LJNF3 on Pro-Inflammatory Cytokine Secretion
2.5. Effect of LJNF3 on iNOS and COX-2 Protein Expression
2.6. Effect of LJNF3 on MAPK and NF-κB Activation
2.7. Protective Effect of LJNF3 on LPS-Induced Toxicity by Zebrafish Model
2.8. Effect of LJNF3 against LPS-Induced Cell Death, ROS and NO Production
3. Materials and Methods
3.1. Materials and Reagents
3.2. Extraction and Purification of Polysaccharides
3.3. Infrared Spectroscopic Analysis
3.4. Molecular Weight Analysis
3.5. Monosaccharide Composition Analysis
3.6. NMR Spectroscopy
3.7. Cell Culture and Cell Viability Analysis
3.8. Inflammatory Responses Analysis
3.9. Western Blot Analysis
3.10. Origin and Maintenance of Parental Zebrafish
3.11. Survival Rate and Heart-Beating Rate Analysis
3.12. Inflammation-Induced Intracellular Cell Death, ROS and NO and Image Analysis
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Zhang, T.; Wu, S.; Ai, C.; Wen, C.; Liu, Z.; Wang, L.; Jiang, L.; Shen, P.; Zhang, G.; Song, S. Galactofucan from Laminaria japonica is not degraded by the human digestive system but inhibits pancreatic lipase and modifies the intestinal microbiota. Int. J. Biol. Macromol. 2021, 166, 611–620. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, W.; Mitra, D.; McCandless, M.G.; Sharma, P.; Tandon, R.; Zhang, F.; Linhardt, R.J. The structure-activity relationship of the interactions of SARS-CoV-2 spike glycoproteins with glucuronomannan and sulfated galactofucan from Saccharina japonica. Int. J. Biol. Macromol. 2020, 163, 1649–1658. [Google Scholar] [CrossRef]
- Jin, W.; Jiang, D.; Zhang, W.; Wang, C.; Xia, K.; Zhang, F.; Linhardt, R.J. Interactions of fibroblast growth factors with sulfated galactofucan from Saccharina japonica. Int. J. Biol. Macromol. 2020, 160, 26–34. [Google Scholar] [CrossRef]
- Shevchenko, N.M.; Anastyuk, S.D.; Menshova, R.V.; Vishchuk, O.S.; Isakov, V.I.; Zadorozhny, P.A.; Sikorskaya, T.V.; Zvyagintseva, T.N. Further studies on structure of fucoidan from brown alga Saccharina gurjanovae. Carbohydr. Polym. 2015, 121, 207–216. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Zhang, Z.; Zhang, H.; Niu, X. Structural studies on a novel fucogalactan sulfate extracted from the brown seaweed Laminaria japonica. Int. J. Biol. Macromol. 2010, 47, 126–131. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Jin, W.; Zhang, H.; Zhang, Q. Structure-activity relationship of sulfated hetero/galactofucan polysaccharides on dopaminergic neuron. Int. J. Biol. Macromol. 2016, 82, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.; Ehrig, K.; Liewert, I.; Alban, S. Interference with the CXCL12/CXCR4 axis as potential antitumor strategy: Superiority of a sulfated galactofucan from the brown alga Saccharina latissima and fucoidan over heparins. Glycobiology 2015, 25, 812–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, D.; Wang, Q.; Yang, Y.; Hu, Y.; Song, Y.; He, Y.; Liu, S.; Wu, L. Hypolipidemic effects of fucoidan fractions from Saccharina sculpera (Laminariales, Phaeophyceae). Int. J. Biol. Macromol. 2019, 140, 188–195. [Google Scholar] [CrossRef]
- Usoltseva, R.V.; Anastyuk, S.D.; Surits, V.V.; Shevchenko, N.M.; Thinh, P.D.; Zadorozhny, P.A.; Ermakova, S.P. Comparison of structure and in vitro anticancer activity of native and modified fucoidans from Sargassum feldmannii and S. duplicatum. Int. J. Biol. Macromol. 2019, 124, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Thinh, P.D.; Menshova, R.V.; Ermakova, S.P.; Anastyuk, S.D.; Ly, B.M.; Zvyagintseva, T.N. Structural characteristics and anticancer activity of fucoidan from the brown alga Sargassum mcclurei. Mar. Drugs 2013, 11, 1456–1476. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.L.; Li, Y.; Ni, L.Q.; Li, Y.X.; Cui, Y.S.; Jiang, S.L.; Xie, E.Y.; Du, J.; Deng, F.; Dong, C.X. Structural characterization and antiviral activity of two fucoidans from the brown algae Sargassum henslowianum. Carbohydr. Polym. 2020, 229, 115487. [Google Scholar] [CrossRef]
- Cong, Q.; Chen, H.; Liao, W.; Xiao, F.; Wang, P.; Qin, Y.; Dong, Q.; Ding, K. Structural characterization and effect on anti-angiogenic activity of a fucoidan from Sargassum fusiforme. Carbohydr. Polym. 2016, 136, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; He, X.; Wu, W.; Wang, S.; Dai, J.; Zhang, Z.; Jin, W.; Yan, J.; Mao, G. Sulfated galactofucan from Sargassum thunbergii induces senescence in human lung cancer A549 cells. Food Funct. 2020, 11, 4785–4792. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Liu, B.; Li, S.; Chen, J.; Tang, H.; Jiang, D.; Zhang, Q.; Zhong, W. The structural features of the sulfated heteropolysaccharide (ST-1) from Sargassum thunbergii and its neuroprotective activities. Int. J. Biol. Macromol. 2018, 108, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, L.; Hu, W. Stereoselective synthesis of a sulfated tetrasaccharide corresponding to a rare sequence in the galactofucan isolated from Sargassum polycystum. J. Org. Chem. 2014, 79, 4718–4726. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Zhang, W.; Wang, J.; Ren, S.; Song, N.; Duan, D.; Zhang, Q. Characterization of laminaran and a highly sulfated polysaccharide from Sargassum fusiforme. Carbohydr. Res. 2014, 385, 58–64. [Google Scholar] [CrossRef]
- Jin, W.; Wu, W.; Tang, H.; Wei, B.; Wang, H.; Sun, J.; Zhang, W.; Zhong, W. Structure Analysis and Anti-Tumor and Anti-Angiogenic Activities of Sulfated Galactofucan Extracted from Sargassum thunbergii. Mar. Drugs 2019, 17, 52. [Google Scholar] [CrossRef] [Green Version]
- Bilan, M.I.; Grachev, A.A.; Shashkov, A.S.; Thuy, T.T.; Van, T.T.; Ly, B.M.; Nifantiev, N.E.; Usov, A.I. Preliminary investigation of a highly sulfated galactofucan fraction isolated from the brown alga Sargassum polycystum. Carbohydr. Res. 2013, 377, 48–57. [Google Scholar] [CrossRef]
- Menshova, R.V.; Anastyuk, S.D.; Ermakova, S.P.; Shevchenko, N.M.; Isakov, V.I.; Zvyagintseva, T.N. Structure and anticancer activity in vitro of sulfated galactofucan from brown alga Alaria angusta. Carbohydr. Polym. 2015, 132, 118–125. [Google Scholar] [CrossRef]
- Menshova, R.V.U.; Anastyuk, S.D.; Shevchenko, N.M.; Zvyagintseva, T.N.; Ermakova, S.P. The comparison of structure and anticancer activity in vitro of polysaccharides from brown algae Alaria marginata and A. angusta. Carbohydr. Polym. 2016, 153, 258–265. [Google Scholar]
- Anastyuk, S.D.; Imbs, T.I.; Shevchenko, N.M.; Dmitrenok, P.S.; Zvyagintseva, T.N. ESIMS analysis of fucoidan preparations from Costaria costata, extracted from alga at different life-stages. Carbohydr. Polym. 2012, 90, 993–1002. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, W.; Liang, H.; Zhang, Q. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity. Mar. Drugs 2015, 14, 3. [Google Scholar] [CrossRef]
- Bilan, M.I.; Ustyuzhanina, N.E.; Shashkov, A.S.; Thanh, T.T.T.; Bui, M.L.; Tran, T.T.V.; Bui, V.N.; Nifantiev, N.E.; Usov, A.I. A sulfated galactofucan from the brown alga Hormophysa cuneiformis (Fucales, Sargassaceae). Carbohydr. Res. 2018, 469, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, Q.; Wang, Q.; He, Y.; Ren, D.; Liu, S.; Wu, L. Structural characterization and antitumor effects of fucoidans from brown algae Kjellmaniella crassifolia farmed in northern China. Int. J. Biol. Macromol. 2018, 119, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Will Castro, L.S.E.P.; Gomes Castro, A.J.; da S. Nascimento Santos, M.; de Sousa Pinheiro, T.; de Quevedo Florentin, K.; Alves, L.G.; Soriano, E.M.; Araújo, R.M.; Leite, E.L. Effect of galactofucan sulfate of a brown seaweed on induced hepatotoxicity in rats, sodium pentobarbital-induced sleep, and anti-inflammatory activity. J. Appl. Phycol. 2015, 28, 2005–2017. [Google Scholar] [CrossRef]
- Synytsya, A.; Kim, W.-J.; Kim, S.-M.; Pohl, R.; Synytsya, A.; Kvasnička, F.; Čopíková, J.; Il Park, Y. Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydr. Polym. 2010, 81, 41–48. [Google Scholar] [CrossRef]
- Hemmingson, J.A.; Falshaw, R.; Furneaux, R.H.; Thompson, K. Structure and Antiviral Activity of the Galactofucan Sulfates Extracted from Undaria Pinnatifida (Phaeophyta). J. Appl. Phycol. 2006, 18, 185–193. [Google Scholar] [CrossRef]
- Ponce, N.M.A.; Flores, M.L.; Pujol, C.A.; Becerra, M.B.; Navarro, D.A.; Cordoba, O.; Damonte, E.B.; Stortz, C.A. Fucoidans from the phaeophyta Scytosiphon lomentaria: Chemical analysis and antiviral activity of the galactofucan component. Carbohydr. Res. 2019, 478, 18–24. [Google Scholar] [CrossRef]
- Rocha, H.A.; Moraes, F.A.; Trindade, E.S.; Franco, C.R.; Torquato, R.J.; Veiga, S.S.; Valente, A.P.; Mourao, P.A.; Leite, E.L.; Nader, H.B.; et al. Structural and hemostatic activities of a sulfated galactofucan from the brown alga Spatoglossum schroederi. Ideal Antithrombotic Agent? J. Biol. Chem. 2005, 280, 41278–41288. [Google Scholar] [CrossRef] [Green Version]
- Nobre, L.T.; Vidal, A.A.; Almeida-Lima, J.; Oliveira, R.M.; Paredes-Gamero, E.J.; Medeiros, V.P.; Trindade, E.S.; Franco, C.R.; Nader, H.B.; Rocha, H.A. Fucan effect on CHO cell proliferation and migration. Carbohydr. Polym. 2013, 98, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Thompson, K.D.; Dragar, C. Antiviral activity of Undaria pinnatifida against herpes simplex virus. Phytother. Res. 2004, 18, 551–555. [Google Scholar] [CrossRef]
- Apostolova, E.; Lukova, P.; Baldzhieva, A.; Katsarov, P.; Nikolova, M.; Iliev, I.; Peychev, L.; Trica, B.; Oancea, F.; Delattre, C.; et al. Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review. Polymers 2020, 12, 2338. [Google Scholar] [CrossRef]
- Prokofjeva, M.M.; Imbs, T.I.; Shevchenko, N.M.; Spirin, P.V.; Horn, S.; Fehse, B.; Zvyagintseva, T.N.; Prassolov, V.S. Fucoidans as potential inhibitors of HIV-1. Mar. Drugs 2013, 11, 3000–3014. [Google Scholar] [CrossRef] [PubMed]
- Shemami, M.R.; Tabarsa, M.; You, S. Isolation and chemical characterization of a novel immunostimulating galactofucan from freshwater Azolla filiculoides. Int. J. Biol. Macromol. 2018, 118, 2082–2091. [Google Scholar] [CrossRef] [PubMed]
- Usoltseva, R.V.; Anastyuk, S.D.; Ishina, I.A.; Isakov, V.V.; Zvyagintseva, T.N.; Thinh, P.D.; Zadorozhny, P.A.; Dmitrenok, P.S.; Ermakova, S.P. Structural characteristics and anticancer activity in vitro of fucoidan from brown alga Padina boryana. Carbohydr. Polym. 2018, 184, 260–268. [Google Scholar] [CrossRef]
- Ermakova, S.; Sokolova, R.; Kim, S.M.; Um, B.H.; Isakov, V.; Zvyagintseva, T. Fucoidans from brown seaweeds Sargassum hornery, Eclonia cava, Costaria costata: Structural characteristics and anticancer activity. Appl. Biochem. Biotechnol. 2011, 164, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Lu, J.; Sun-Waterhouse, D.; Mu, L.; Sun, W.; Zhao, M.; Zhao, H. Polysaccharides from Laminaria japonica: Structural characteristics and antioxidant activity. LWT Food Sci. Technol. 2016, 73, 602–608. [Google Scholar] [CrossRef]
- Ermakova, S.; Men’shova, R.; Vishchuk, O.; Kim, S.-M.; Um, B.-H.; Isakov, V.; Zvyagintseva, T. Water-soluble polysaccharides from the brown alga Eisenia bicyclis: Structural characteristics and antitumor activity. Algal Res. 2013, 2, 51–58. [Google Scholar] [CrossRef]
- Adhikari, U.; Mateu, C.G.; Chattopadhyay, K.; Pujol, C.A.; Damonte, E.B.; Ray, B. Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry 2006, 67, 2474–2482. [Google Scholar] [CrossRef] [PubMed]
- Kariya, Y.; Mulloy, B.; Imai, K.; Tominaga, A.; Kaneko, T.; Asari, A.; Suzuki, K.; Masuda, H.; Kyogashima, M.; Ishii, T. Isolation and partial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteoclastogenesis. Carbohydr. Res. 2004, 339, 1339–1346. [Google Scholar] [CrossRef]
- Chandia, N.P.; Matsuhiro, B. Characterization of a fucoidan from Lessonia vadosa (Phaeophyta) and its anticoagulant and elicitor properties. Int. J. Biol. Macromol. 2008, 42, 235–240. [Google Scholar] [CrossRef]
- Vishchuk, O.S.; Ermakova, S.P.; Zvyagintseva, T.N. Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: Isolation, structural characteristics, and antitumor activity. Carbohydr. Res. 2011, 346, 2769–2776. [Google Scholar] [CrossRef]
- Leal, D.; Mansilla, A.; Matsuhiro, B.; Moncada-Basualto, M.; Lapier, M.; Maya, J.D.; Olea-Azar, C.; De Borggraeve, W.M. Chemical structure and biological properties of sulfated fucan from the sequential extraction of subAntarctic Lessonia sp (Phaeophyceae). Carbohydr. Polym. 2018, 199, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.E.R.; Cardoso, M.A.; Noseda, M.D.; Cerezo, A.S. Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydr. Res. 2001, 333, 281–293. [Google Scholar]
- Geng, L.; Hu, W.; Liu, Y.; Wang, J.; Zhang, Q. A heteropolysaccharide from Saccharina japonica with immunomodulatory effect on RAW 264.7 cells. Carbohydr. Polym. 2018, 201, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Fang, Q.; Jiang, D.; Li, T.; Wei, B.; Sun, J.; Zhang, W.; Zhang, Z.; Zhang, F.; Linhardt, R.J.; et al. Structural characteristics and anti-complement activities of polysaccharides from Sargassum hemiphyllum. Glycoconj. J. 2020, 37, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Wang, J.F.; Zha, X.Q.; Cui, S.H.; Cao, L.; Luo, J.P. Immunomodulatory activity on macrophage of a purified polysaccharide extracted from Laminaria japonica. Carbohydr. Polym. 2015, 134, 66–73. [Google Scholar] [CrossRef]
- Diouf, P.N.; Stevanovic, T.; Boutin, Y. The effect of extraction process on polyphenol content, triterpene composition and bioactivity of yellow birch (Betula alleghaniensis Britton) extracts. Ind. Crop. Prod. 2009, 30, 297–303. [Google Scholar] [CrossRef]
- Ye, J.; Chen, D.; Ye, Z.; Huang, Y.; Zhang, N.; Lui, E.M.K.; Xue, C.; Xiao, M. Fucoidan Isolated from Saccharina japonica Inhibits LPS-Induced Inflammation in Macrophages via Blocking NF-kappaB, MAPK and JAK-STAT Pathways. Mar. Drugs 2020, 18, 328. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ni, L.; Fu, X.; Duan, D.; Xu, J.; Gao, X. A Sulfated Polysaccharide from Saccharina japonica Suppresses LPS-Induced Inflammation Both in a Macrophage Cell Model via Blocking MAPK/NF-kappaB Signal Pathways In Vitro and a Zebrafish Model of Embryos and Larvae In Vivo. Mar. Drugs 2020, 18, 593. [Google Scholar] [CrossRef]
- Ni, L.; Wang, L.; Fu, X.; Duan, D.; Jeon, Y.J.; Xu, J.; Gao, X. In vitro and in vivo anti-inflammatory activities of a fucose-rich fucoidan isolated from Saccharina japonica. Int. J. Biol. Macromol. 2020, 156, 717–729. [Google Scholar] [CrossRef]
- Citkowska, A.; Szekalska, M.; Winnicka, K. Possibilities of Fucoidan Utilization in the Development of Pharmaceutical Dosage Forms. Mar. Drugs 2019, 17, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, F.; Zou, J.; Rao, Z.; Ji, Y.; Lei, Z.; Peng, L.; Yang, Y.; He, X.; Zeng, N. Polysaccharides from Laminaria japonica: An insight into the current research on structural features and biological properties. Food Funct. 2021, 12, 4254–4283. [Google Scholar] [CrossRef] [PubMed]
- Pozharitskaya, O.N.; Obluchinskaya, E.D.; Shikov, A.N. Mechanisms of Bioactivities of Fucoidan from the Brown Seaweed Fucus vesiculosus L. of the Barents Sea. Mar. Drugs. 2020, 18, 275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.X.; Dai, Z.R. Immunomodulatory activities on macrophage of a polysaccharide from Sipunculus nudus L. Food Chem Toxicol. 2011, 49, 2961–2967. [Google Scholar] [CrossRef]
- Zha, X.Q.; Lu, C.Q.; Cui, S.H.; Pan, L.H.; Zhang, H.L.; Wang, J.H.; Luo, J.P. Structural identification and immunostimulating activity of a Laminaria japonica polysaccharide. Int. J. Biol. Macromol. 2015, 78, 429–438. [Google Scholar] [CrossRef]
- Maria, B.; Adrian, B.W. Role of nitric oxide in wound repair. Am. J. Surg. 2002, 183, 406–412. [Google Scholar]
- Li, K.K.; Shen, S.S.; Deng, X.; Shiu, H.T.; Siu, W.S.; Leung, P.C.; Ko, C.H.; Cheng, B.H. Dihydrofisetin exerts its anti-inflammatory effects associated with suppressing ERK/p38 MAPK and Heme Oxygenase-1 activation in lipopolysaccharide-stimulated RAW 264.7 macrophages and carrageenan-induced mice paw edema. Int. Immunopharmacol. 2018, 54, 366–374. [Google Scholar] [CrossRef]
- Jayawardena, T.U.; Sanjeewa, K.K.A.; Nagahawatta, D.P.; Lee, H.G.; Lu, Y.A.; Vaas, A.; Abeytunga, D.T.U.; Nanayakkara, C.M.; Lee, D.S.; Jeon, Y.J. Anti-Inflammatory Effects of Sulfated Polysaccharide from Sargassum Swartzii in Macrophages via Blocking TLR/NF-Kappab Signal Transduction. Mar. Drugs 2020, 18, 601. [Google Scholar] [CrossRef]
- Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect. Biol. 2009, 1, a000034. [Google Scholar] [CrossRef] [PubMed]
- Sanjeewa, K.K.A.; Jayawardena, T.U.; Kim, S.-Y.; Kim, H.-S.; Ahn, G.; Kim, J.; Jeon, Y.-J. Fucoidan isolated from invasive Sargassum horneri inhibit LPS-induced inflammation via blocking NF-κB and MAPK pathways. Algal Res. 2019, 41, 101561. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Chandler, S.F.; Dodds, J.H. The Effect of Phosphate, Nitrogen and Sucrose on the Production of Phenolics and Solasodine in Callus Cultures of Solanum laciniatum. Plant Cell Rep. 1983, 2, 205–208. [Google Scholar] [CrossRef]
- Kawai, Y.; Seno, N.; Anno, K. A modified method for chondrosulfatase assay. Anal. Biochem. 1969, 32, 314–321. [Google Scholar] [CrossRef]
- Winters, A.L.; Minchin, F.R. Modification of the Lowry assay to measure proteins and phenols in covalently bound complexes. Anal. Biochem. 2005, 346, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.C.; Kim, S.Y.; Kim, E.A.; Lee, J.H.; Kim, Y.S.; Yu, S.K.; Chae, J.B.; Choe, I.H.; Cho, J.H.; Jeon, Y.J. Antioxidant activity of polysaccharide purified from Acanthopanax koreanum Nakai stems in vitro and in vivo zebrafish model. Carbohydr. Polym. 2015, 127, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Ko, C.I.; Jee, Y.; Jeong, Y.; Kim, M.; Kim, J.S.; Jeon, Y.J. Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model. Carbohydr. Polym. 2013, 92, 84–89. [Google Scholar] [CrossRef]
- Zou, Y.X.; Fu, X.T.; Liu, N.N.; Duan, D.; Wang, X.L.; Xu, J.C. The synergistic anti-inflammatory activities of agaro-oligosaccharides with different degrees of polymerization. J. Appl. Phycol. 2019, 31, 2547–2558. [Google Scholar] [CrossRef]
Sample | Total Sugar (%) | Sulfate (%) | Phenol (%) | Protein (%) | Monosaccharide Composition (%) | Molecular Weight (kDa) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rhamnose | Fucose | Xylose | Mannose | Galactose | Glucose | ||||||
LJNF1 | 71.7 ± 0.25 | 9.31 ± 0.33 | 0.05 ± 0.01 | 0.07 ± 0.02 | 0.95 | 39.97 | 3.76 | 10.41 | 39.24 | 5.67 | 2113 |
LJNF2 | 75.58 ± 0.53 | 8.42 ± 0.44 | 0.12 ± 0.01 | ND | 1.56 | 45.67 | 7.41 | 21.79 | 15.03 | 8.54 | 324.3 |
LJNF3 | 69.12 ± 0.94 | 11.36 ± 0.42 | ND | ND | ND | 79.22 | ND | ND | 20.78 | ND | 261.7 |
Source of Algae | Monosaccharide Composition | Sulfate Group | Molecular Weight | Biological Activities | Reference | |
---|---|---|---|---|---|---|
Saccharina (Laminaria) | Saccharina (Laminaria) japonica | Fuc:Gal = 79.2:29.78 | 11.36 ± 0.42% | 261.7 KDa | Anti-inflammatory activity | this study |
Saccharina (Laminaria) japonica | Fuc:Gal = 1:0.25 | 21% | 13.7 KDa | Antiviral activity | [2] | |
Saccharina (Laminaria) japonica | Fuc:Gal = 1:0.26 | 48.26% | ND | Growth-promoting activity of fibrocytes | [3] | |
Saccharina gurjanovae | Fuc:Gal = 76.3:23.7 mol% | 25.1% | 71 KDa | Anticancer | [7] | |
Saccharinalatissima | Fuc:Gal:Xyl = 86.1:11.1:2.8 | ND | 416,000 | Antitumour | [7] | |
Saccharina japonica | Fuc:Gal:Man:Xyl = 49.9:44.1:5.3:1.1 | 23.2% | 1800 KDa | Antiviral activity | [33] | |
Laminaria japonica | FucXyl:Gal:Glc:GalUA:Man = 14.9:1.0:16.8:1.7:3.9:6.3 | 26.7% | 527.3 KDa | Modify the intestinal microbiota | [1] | |
Saccharina sculpera | Fuc:Gal:Glu:Man:Rha:Xyl:GlcA = 16.67:31.90:2.50:6.36:1.46:2.20:6.82 | 27.13 ± 0.79% | 527.3 KDa | Hypolipidemic effect | [8] | |
Laminaria japonica | Fuc:Gal:Man:Glc:Rha = 1:0.172:0.016:0.015:0.003 | 41.80% | ND | Neuron protective effect | [6] | |
Laminaria japonica | Fuc:Gal:Man:Glc:Rha = 81.09:15.31:1.42:1.35:0.23 | 41.80% | 8.1 KDa | ND | [5] | |
Sargassum | Sargassum feldmannii | Fuc:Gal = 72:28 mol% | 25.3% | 237.7 KDa | Anticancer | [9] |
Sargassum duplicatum | Fuc:Gal = 51:49 mol% | 31.7% | 191 KDa | Anticancer | [9] | |
Sargassum mcclurei | Fuc:Gal = 58.5:41.5 mol% | 35% | ND | Anticancer | [10] | |
Sargassum henslowianum | Fuc:Gal = 3:1 | 31.9% | 6.55 × 105 | Antiviral activity | [11] | |
Sargassum fusiforme | Fuc:Gal = 59.6:44.4 mol% | ND | ND | Anti-angiogenic activity | [12] | |
Sargassum thunbergii | Fuc:Gal = 1:0.46 | 38.79% | 121.2 KDa | Anticancer | [13] | |
Sargassum polycystum | Fuc:Gal:Xyl = 36.0:19.1:1.7 | 33.7% | ND | ND | [18] | |
Sargassum thunbergii | Man:Rha:GlcA:Glc:Gal:Xyl:Fuc = 0.04:0.03:0.05:0.04: 0.41:0.02:1.00 | 23.01% | 143.0 and 36.7 KDa | Anti-tumor and Anti-angiogenic activities | [17] | |
Sargassum thunbergii | Man:Rha:GlcA:Glc:Gal:Xyl:Fuc = 0.59:0.08:0.31:0.04:0.47:0.08:1.00 | 14.81% | 135 KDa | Neuroprotective activities | [14] | |
Sargassum fusiforme | Fuc:Xyl:Gal:GlcA:Man = 1:0.03:0.24:0.02:0.02 | 45.02% | 151.2 KDa | ND | [16] | |
Alaria | Alaria angusta | Fuc:Gal = 52.6:47.4 mol% | 24.0% | ND | Anticancer | [19] |
Alaria marginata and A. angusta | Fuc:Gal:Xyl = 47.5:47.3:5.2 | 28.3% | ND | Anticancer | [20] | |
Azolla | Azolla filiculoides? | Fuc:Gal = 61.25:38.75 | ND | 992.9 × 103 g/mol | Immunological activity | [34] |
Hizikia | Hizikiafusiforme | Fuc:Gal:Xyl = 1:0.27:0.01 | 39.85% | 99.2 KDa | Anti-complement activity | [22] |
Hormophysa | Hormophysa cuneiformis | Fuc:Gal:Xyl = 39.3:9.6:1.0 | 35.3% | 121 KDa | Anticoagulant | [23] |
Lobophora | Lobophoravariegata | Fuc:Gal:Xyl = 29.2:36.8:0.1 | ND | 35 KDa | Anti-oxidant and anti-inflammatory | [25] |
Padina | Padina boryana | Fuc:Gal:Man:Glu = 39.8:36.7:17.4:6 | 18.6% | 317.5 and 8.5 KDa | Anticancer | [35] |
Undaria | Undaria pinnatifida | Fuc:Gal:Xyl:Man = 50.9:44.6:4.2:0.3 | ND | 1246 KDa | Antitumor | [26] |
Undaria pinnatifida | Fuc:Gal:Rha = 54:45:1 | ND | 290 KDa | Antiviral activity | [27] | |
Scytosiphon | Scytosiphon lomentaria | Fuc:Gal = 88:12 mol% | 29.5% | 8.5 KDa | Antiviral activity | [28] |
Spatoglossum | Spatoglossumschroederi | Fuc:Gal:Xyl = 1.0:2.0:0.5 | 36.36% | 21.5 KDa | Hemostatic Activities | [29] |
Spatoglossum schröederi | Fuc:Gal:Xyl = 1.0:2.0:0.5 | 15.0% | 21.5 KDa | Antitumor | [30] | |
Costaria | Costaria costata | Fuc:Gal:Man:GlcA = 70.2:19.8:7:3 | 23.8% | 160 KDa | ND | [21] |
Eclonia | Eclonia cava? | Fuc:Gal:Man:Rha:Xyl:Glc = 1:0.83:0.01:0.05:0.06 | 18.9% | ND | Anticancer | [36] |
Kjellmaniella | Kjellmaniella crassifolia | Fuc:Gal:Man:Xyl:Glc:GlcA = 1:0.35:0.05: 0.03:0.01:0.06 | 32.5% | 258 KDa | Antitumor | [24] |
Residue | Name | 1H and 13C Chemical Shifts (ppm) | |||||
---|---|---|---|---|---|---|---|
A | →3)-α-l-Fucp-4-SO3−(1→ | H-1 | H-2 | H-3 | H-4 | H-5 | H-6 |
5.05 | 3.93 | 4.52 | 4.25 | 3.97 | 1.20 | ||
C-1 | C-2 | C-3 | C-4 | C-5 | C-6 | ||
100.77 | 65.56 | 72.36 | 80.08 | 66.85 | 19.97 | ||
B | →6)-β-d-Galp-(1→ | H-1 | H-2 | H-3 | H-4 | H-5 | H-6 |
4.46 | 3.55 | 3.72 | 3. 98 | 3.89 | 3.84 | ||
C-1 | C-2 | C-3 | C-4 | C-5 | C-6 | ||
104.25 | 72.77 | 73.70 | 69.85 | 74.21 | 65.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Ni, L.; Fu, X.; Wang, L.; Duan, D.; Huang, L.; Xu, J.; Gao, X. Molecular Mechanism of Anti-Inflammatory Activities of a Novel Sulfated Galactofucan from Saccharina japonica. Mar. Drugs 2021, 19, 430. https://doi.org/10.3390/md19080430
Chen X, Ni L, Fu X, Wang L, Duan D, Huang L, Xu J, Gao X. Molecular Mechanism of Anti-Inflammatory Activities of a Novel Sulfated Galactofucan from Saccharina japonica. Marine Drugs. 2021; 19(8):430. https://doi.org/10.3390/md19080430
Chicago/Turabian StyleChen, Xiaodan, Liying Ni, Xiaoting Fu, Lei Wang, Delin Duan, Luqiang Huang, Jiachao Xu, and Xin Gao. 2021. "Molecular Mechanism of Anti-Inflammatory Activities of a Novel Sulfated Galactofucan from Saccharina japonica" Marine Drugs 19, no. 8: 430. https://doi.org/10.3390/md19080430
APA StyleChen, X., Ni, L., Fu, X., Wang, L., Duan, D., Huang, L., Xu, J., & Gao, X. (2021). Molecular Mechanism of Anti-Inflammatory Activities of a Novel Sulfated Galactofucan from Saccharina japonica. Marine Drugs, 19(8), 430. https://doi.org/10.3390/md19080430