Seaweed Blends as a Valuable Source of Polyunsaturated and Healthy Fats for Nutritional and Food Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Fatty Acid Profiles and Lipid Quality Indicators
2.2.1. Fatty Acid Profiles
2.2.2. Lipid Quality Indicators
3. Materials and Methods
3.1. Seaweed Blends Samples
3.2. Chemical Composition Determination
3.2.1. Moisture and Ash
3.2.2. Crude Protein
3.2.3. Lipid Extraction
3.2.4. Fatty Acids Profiling by Gas Chromatography–Mass Spectrometry
3.2.5. Total Carbohydrates
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peñalver, R.; Lorenzo, J.M.; Ros, G.; Amarowicz, R.; Pateiro, M.; Nieto, G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar. Drugs 2020, 18, 301. [Google Scholar] [CrossRef] [PubMed]
- Paiva, L.; Lima, E.; Neto, A.I.; Marcone, M.; Baptista, J. Nutritional and Functional Bioactivity Value of Selected Azorean Macroalgae: Ulva compressa, Ulva rigida, Gelidium microdon, and Pterocladiella capillacea. J. Food Sci. 2017, 82, 1757–1764. [Google Scholar] [CrossRef]
- Lopes, D.; Melo, T.; Rey, F.; Meneses, J.; Monteiro, F.L.; Helguero, L.A.; Abreu, M.H.; Lillebø, A.I.; Calado, R.; Domingues, M.R. Valuing Bioactive Lipids from Green, Red and Brown Macroalgae from Aquaculture, to Foster Functionality and Biotechnological Applications. Molecules 2020, 25, 3883. [Google Scholar] [CrossRef]
- Sharma, P.P.; Baskaran, V. Polysaccharide (Laminaran and Fucoidan), Fucoxanthin and Lipids as Functional Components from Brown Algae (Padina tetrastromatica) Modulates Adipogenesis and Thermogenesis in Diet-Induced Obesity in C57BL6 Mice. Algal Res. 2021, 54, 102187. [Google Scholar] [CrossRef]
- Birch, D.; Skallerud, K.; Paul, N. Who Eats Seaweed? An Australian Perspective. J. Int. Food Agribus. Mark. 2019, 31, 329–351. [Google Scholar] [CrossRef]
- Zubia, M.; Fabre, M.S.; Kerjean, V.; Lann, K.L.; Stiger-Pouvreau, V.; Fauchon, M.; Deslandes, E. Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem. 2009, 116, 693–701. [Google Scholar] [CrossRef]
- Pereira, H.; Barreira, L.; Figueiredo, F.; Custódio, L.; Vizetto-Duarte, C.; Polo, C.; Rešek, E.; Engelen, A.; Varela, J. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications. Mar. Drugs 2012, 10, 1920–1935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biancarosa, I.; Espe, M.; Bruckner, C.G.; Heesch, S.; Liland, N.; Waagbø, R.; Torstensen, B.; Lock, E.J. Amino acid composition, protein content, and nitrogen-to-protein conversion factors of 21 seaweed species from Norwegian waters. J. Appl. Phycol. 2017, 29, 1001–1009. [Google Scholar] [CrossRef]
- Rodrigues, D.; Freitas, A.C.; Pereira, L.; Rocha-Santos, T.A.P.; Vasconcelos, M.W.; Roriz, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.P.; Duarte, A.C. Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem. 2015, 183, 197–207. [Google Scholar] [CrossRef]
- Paiva, L.; Lima, E.; Patarra, R.F.; Neto, A.I.; Baptista, J. Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chem. 2014, 164, 128–135. [Google Scholar] [CrossRef]
- Maehre, H.K.; Malde, M.K.; Eilertsen, K.-E.; Elvevoll, E.O. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric. 2014, 94, 3281–3290. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; López-Cervantes, J.; López-Hernández, J.; Paseiro-Losada, P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 2004, 85, 439–444. [Google Scholar] [CrossRef]
- Vieira, E.F.; Soares, C.; Machado, S.; Correia, M.; Ramalhosa, M.J.; Oliva-teles, M.T.; Paula Carvalho, A.; Domingues, V.F.; Antunes, F.; Oliveira, T.A.C.; et al. Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chem. 2018, 269, 264–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bikker, P.; Stokvis, L.; van Krimpen, M.M.; van Wikselaar, P.G.; Cone, J.W. Evaluation of seaweeds from marine waters in Northwestern Europe for application in animal nutrition. Anim. Feed Sci. Technol. 2020, 263, 114460. [Google Scholar] [CrossRef]
- Lopes, D.; Moreira, A.S.P.; Rey, F.; da Costa, E.; Melo, T.; Maciel, E.; Rego, A.; Abreu, M.H.; Domingues, P.; Calado, R.; et al. Lipidomic signature of the green macroalgae Ulva rigida farmed in a sustainable integrated multi-trophic aquaculture. J. Appl. Phycol. 2019, 31, 1369–1381. [Google Scholar] [CrossRef] [Green Version]
- Kumari, P.; Kumar, M.; Gupta, V.; Reddy, C.R.K.; Jha, B. Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem. 2010, 120, 749–757. [Google Scholar] [CrossRef]
- Billingsley, H.; Carbone, S.; Lavie, C. Dietary Fats and Chronic Noncommunicable Diseases. Nutrients 2018, 10, 1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Francavilla, M.; Franchi, M.; Monteleone, M.; Caroppo, C. The Red Seaweed Gracilaria Gracilis as a Multi Products Source. Mar. Drugs 2013, 11, 3754–3776. [Google Scholar] [CrossRef] [Green Version]
- Lopes, D.; Melo, T.; Meneses, J.; Abreu, M.H.; Pereira, R.; Domingues, P.; Lillebø, A.I.; Calado, R.; Domingues, M.R. A New Look for the Red Macroalgae Palmaria Palmata: A Seafood with Polar Lipids Rich in EPA and with Antioxidant Properties. Mar. Drugs 2019, 17, 533. [Google Scholar] [CrossRef] [Green Version]
- Zárate, R.; el Jaber-Vazdekis, N.; Ramírez-Moreno, R. Importance of Polyunsaturated Fatty Acids from Marine Algae. In Omega-3 Fatty Acids; Hegde, M.V., Zanwar, A.A., Adekar, S.P., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 101–126. ISBN 978-3-319-40456-1. [Google Scholar]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health Implications of High Dietary Omega-6 Polyunsaturated Fatty Acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef]
- Paiva, L.; Lima, E.; Neto, A.I.; Marcone, M.; Baptista, J. Health-promoting ingredients from four selected Azorean macroalgae. Food Res. Int. 2016, 89, 432–438. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.-S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Cornish, M.L.; Critchley, A.T.; Mouritsen, O.G. Consumption of seaweeds and the human brain. J. Appl. Phycol. 2017, 29, 2377–2398. [Google Scholar] [CrossRef]
- Freeman, A.M.; Morris, P.B.; Aspry, K.; Gordon, N.F.; Barnard, N.D.; Esselstyn, C.B.; Ros, E.; Devries, S.; O’Keefe, J.; Miller, M.; et al. A Clinician’s Guide for Trending Cardiovascular Nutrition Controversies. J. Am. Coll. Cardiol. 2018, 72, 553–568. [Google Scholar] [CrossRef]
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M.; et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
- Nova, P.; Martins, A.P.; Teixeira, C.; Abreu, H.; Silva, J.G.; Silva, A.M.; Freitas, A.C.; Gomes, A.M. Foods with microalgae and seaweeds fostering consumers health: A review on scientific and market innovations. J. Appl. Phycol. 2020, 32, 1789–1802. [Google Scholar] [CrossRef]
- Biancarosa, I.; Belghit, I.; Bruckner, C.G.; Liland, N.S.; Waagbø, R.; Amlund, H.; Heesch, S.; Lock, E.-J. Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: Benefits of and limitations to their potential use in food and feed. J. Sci. Food Agric. 2018, 98, 2035–2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, D.; Melo, T.; Rey, F.; Costa, E.; Moreira, A.S.P.; Abreu, M.H.; Domingues, P.; Lillebø, A.I.; Calado, R.; Rosário Domingues, M. Insights of species-specific polar lipidome signatures of seaweeds fostering their valorization in the blue bioeconomy. Algal Res. 2021, 55, 102242. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Marfaing, H.; Desnica, N.; Jónsdóttir, R.; Skjermo, J.; Rebours, C.; Nitschke, U. Variations in polyphenol and heavy metal contents of wild-harvested and cultivated seaweed bulk biomass: Health risk assessment and implication for food applications. Food Control 2019, 95, 121–134. [Google Scholar] [CrossRef]
- McHugh, D.J. A Guide to the Seaweed Industry; FAO Fisheries Technical Paper 441; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; ISBN 978-92-5-104958-7. [Google Scholar]
- Badmus, U.O.; Taggart, M.A.; Boyd, K.G. The effect of different drying methods on certain nutritionally important chemical constituents in edible brown seaweeds. J. Appl. Phycol. 2019, 31, 3883–3897. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.S. (Ed.) Compositional Analysis of Food. In Food Analysis; Food Science Texts Series; Springer: Boston, MA, USA, 2010; pp. 85–215. ISBN 978-1-4419-1477-4. [Google Scholar]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria Digitata, Laminaria Hyperborea, Saccharina Latissima and Alaria Esculenta. J. Appl. Phycol. 2015, 27, 363–373. [Google Scholar] [CrossRef]
- Peinado, I.; Girón, J.; Koutsidis, G.; Ames, J.M. Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Res. Int. 2014, 66, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Neto, R.; Marçal, C.; Queirós, A.; Abreu, H.; Silva, A.; Cardoso, S. Screening of Ulva Rigida, Gracilaria sp., Fucus Vesiculosus and Saccharina Latissima as Functional Ingredients. Int. J. Mol. Sci. 2018, 19, 2987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Segovia, I.; Lerma-García, M.J.; Fuentes, A.; Barat, J.M. Characterization of Spanish powdered seaweeds: Composition, antioxidant capacity and technological properties. Food Res. Int. 2018, 111, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Angell, A.R.; Mata, L.; de Nys, R.; Paul, N.A. The protein content of seaweeds: A universal nitrogen-to-protein conversion factor of five. J. Appl. Phycol. 2016, 28, 511–524. [Google Scholar] [CrossRef]
- Lourenço, S.O.; Barbarino, E.; De-Paula, J.C.; Marquez, U.M.L. Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol. Res. 2002, 50, 233–241. [Google Scholar] [CrossRef]
- Burg, S.W.K.; Dagevos, H.; Helmes, R.J.K. Towards Sustainable European Seaweed Value Chains: A Triple P Perspective. ICES J. Mar. Sci. 2021, 78, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Campbell, B.; Kreider, R.B.; Ziegenfuss, T.; Roberts, M.; Burke, D.; Landis, J.; Lopez, H.; Antonio, J. International Society of Sports Nutrition position stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2007, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.; Guihéneuf, F.; Stengel, D.B. Fatty acid contents and profiles of 16 macroalgae collected from the Irish Coast at two seasons. J. Appl. Phycol. 2014, 26, 451–463. [Google Scholar] [CrossRef]
- Conde, T.A.; Neves, B.F.; Couto, D.; Melo, T.; Neves, B.; Costa, M.; Silva, J.; Domingues, P.; Domingues, M.R. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar. Drugs 2021, 19, 357. [Google Scholar] [CrossRef]
- Bender, D. Carbohydrate by Difference. In A Dictionary of Food and Nutrition; OUP: Oxford, UK, 2014. [Google Scholar]
- Stephen, A.M.; Champ, M.M.-J.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef]
- da Costa, E.; Domingues, P.; Melo, T.; Coelho, E.; Pereira, R.; Calado, R.; Abreu, M.H.; Domingues, M.R. Lipidomic Signatures Reveal Seasonal Shifts on the Relative Abundance of High-Valued Lipids from the Brown Algae Fucus vesiculosus. Mar. Drugs 2019, 17, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, C.B.; Garg, R.; Wood, L.G.; Garg, M.L. Saturated fat consumption may not be the main cause of increased blood lipid levels. Med. Hypotheses 2014, 82, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, J.A.; Lovegrove, J.A.; Mensink, R.P.; Schwab, U. Dietary Fatty Acids: Is It Time to Change the Recommendations? Ann. Nutr. Metab. 2016, 68, 249–257. [Google Scholar] [CrossRef]
- Mensink, R.P. Effects of Stearic Acid on Plasma Lipid and Lipoproteins in Humans. Lipids 2005, 40, 1201–1205. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef] [PubMed]
- James, M.J.; Ursin, V.M.; Cleland, L.G. Metabolism of stearidonic acid in human subjects: Comparison with the metabolism of other n-3 fatty acids. Am. J. Clin. Nutr. 2003, 77, 1140–1145. [Google Scholar] [CrossRef]
- Rogerson, D. Vegan diets: Practical advice for athletes and exercisers. J. Int. Soc. Sports Nutr. 2017, 14, 36. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci 2020, 21, 5695. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Chiavaroli, L.; Wong, J.M.W.; Kendall, C.; Lewis, G.F.; Vidgen, E.; Connelly, P.W.; Leiter, L.A.; Josse, R.G.; Lamarche, B. Adding monounsaturated fatty acids to a dietary portfolio of cholesterol-lowering foods in hypercholesterolemia. Can. Med. Assoc. J. 2010, 182, 1961–1967. [Google Scholar] [CrossRef] [Green Version]
- Esser, D.; van Dijk, S.J.; Oosterink, E.; Müller, M.; Afman, L.A. High-Fat SFA, MUFA, or n3 PUFA Challenge Affects the Vascular Response and Initiates an Activated State of Cellular Adherence in Lean and Obese Middle-Aged Men. J. Nutr. 2013, 143, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, J.; Choi, I.J.; Kim, Y.-W.; Ryu, K.W.; Kim, Y.-I.; Kim, J. Dietary n-3 and n-6 polyunsaturated fatty acids, the FADS gene, and the risk of gastric cancer in a Korean population. Sci. Rep. 2018, 8, 3823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Wereńska, M.; Goluch, Z.; Teleszko, M. Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Van Wychen, S.; Laurens, L.M.L. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP); No. NREL/TP-5100-60956; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2016; p. 1118077.
- da Costa, E.; Melo, T.; Moreira, A.; Bernardo, C.; Helguero, L.; Ferreira, I.; Cruz, M.; Rego, A.; Domingues, P.; Calado, R.; et al. Valorization of Lipids from Gracilaria sp. Through Lipidomics and Decoding of Antiproliferative and Anti-Inflammatory Activity. Mar. Drugs 2017, 15, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, J.P.; Rey, F.; Melo, T.; Moreira, A.S.P.; Arbona, J.-F.; Skjermo, J.; Forbord, S.; Funderud, J.; Raposo, D.; Kerrison, P.D.; et al. The Unique Lipidomic Signatures of Saccharina latissima Can Be Used to Pinpoint Their Geographic Origin. Biomolecules 2020, 10, 107. [Google Scholar] [CrossRef] [Green Version]
Blend Code | List of Ingredients on the Product Label |
---|---|
BLD0N1 | Ulva rigida, Porphyra spp., Alaria esculenta and Gracilaria gracilis |
BLD0N2 | Fucus vesiculosus, Gracilaria gracilis and Porphyra spp. |
BLD001 | Palmaria palmata, Ulva rigida, Undaria pinnatifida and Porphyra spp. |
BLD005 | Palmaria palmata, Ulva rigida and Porphyra spp. |
BLD006 | Fucus vesiculosus and Ulva rigida |
Composition | BLD0N1 | BLD0N2 | BLD001 | BLD005 | BLD006 |
---|---|---|---|---|---|
Moisture 1 (%) | 10.64 ± 0.23 a | 11.76 ± 0.22 b | 13.45 ± 0.31 c | 11.49 ± 0.18 b | 13.72 ± 0.21 c |
Ash 2 (% DW) | 32.10 ± 0.20 a | 22.99 ± 0.29 b | 26.43 ± 0.79 c | 29.46 ± 0.36 d | 26.47 ± 0.41 c |
Protein 3 (% DW) | 22.27 ± 0.32 ab | 25.97 ± 2.84 a | 17.79 ± 3.67 b | 26.61 ± 1.98 a | 21.74 ± 3.40 ab |
Lipids 1 (% DW) | 01.50 ± 0.09 a | 01.02 ± 0.12 b | 01.03 ± 0.05 b | 00.55 ± 0.13 c | 01.08 ± 0.08 b |
Total carbohydrates 1 (% DW) | 44.17 ± 0.36 a | 50.16 ± 2.89 b | 54.73 ± 3.65 b | 43.50 ± 1.95 a | 50.48 ± 3.46 b |
Fatty Acids | BLD0N1 | BLD0N2 | BLD001 | BLD005 | BLD006 |
---|---|---|---|---|---|
C12:0 | – | tr | – | – | tr |
C14:0 | 3.79 ± 0.11 a | 6.40 ± 0.45 b | 2.27 ± 0.16 c | 2.95 ± 0.22 d | 5.05 ± 0.27 e |
C15:0 | 0.37 ± 0.03 a | 0.32 ± 0.06 ab | 0.29 ± 0.07 ab | 0.20 ± 0.09 b | 0.32 ± 0.05 ab |
C16:0 | 26.83 ± 0.84 a | 14.34 ± 0.78 b | 27.33 ± 1.52 a | 22.38 ± 6.40 ab | 17.22 ± 0.56 ab |
C17:0 | – | 0.12 ± 0.02 | 0.17 ± 0.08 | 0.12 ± 0.07 | 0.14 ± 0.02 |
C18:0 | 9.88 ± 1.78 ab | 6.54 ± 0.77 b | 11.48 ± 2.04 a | 12.66 ± 4.73 a | 8.02 ± 1.75 ab |
C20:0 | 0.12 ± 0.06 ab | 0.17 ± 0.04 b | 0.16 ± 0.07 b | 0.06 ± 0.04 a | 0.09 ± 0.04 ab |
C22:0 | 0.38 ± 0.26 | – | 0.11 ± 0.03 | 0.07 ± 0.05 | 0.09 ± 0.05 |
C24:0 | 0.05 ± 0.04 | – | – | – | – |
∑SFA | 41.41 ± 2.28 a | 27.90 ± 1.27 b | 41.82 ± 2.54 a | 38.44 ± 8.41 a | 30.93 ± 1.34 b |
C14:1 | 0.21 ± 0.02 abc | 0.05 ± 0.04 c | 0.46 ± 0.14 ab | 0.96 ± 0.14 a | 0.15 ± 0.05 bc |
C16:1 n-9 | 1.79 ± 0.17 a | 0.16 ± 0.02 b | 0.84 ± 0.07 c | 0.78 ± 0.14 c | 0.64 ± 0.10 c |
C16:1 n-7 | 2.85 ± 0.08 a | 1.10 ± 0.11 b | 1.24 ± 0.14 b | 1.32 ± 0.15 b | 1.70 ± 0.12 c |
C16:1 n-5 | – | tr | tr | 0.38 ± 0.23 | 0.07 ± 0.03 |
C17:1 | 0.13 ± 0.07 ab | 0.18 ± 0.02 ab | 0.55 ± 0.08 a | tr b | 0.19 ± 0.05 ab |
C18:1 n-9 | 6.71 ± 0.27 a | 34.09 ± 2.90 b | 3.62 ± 0.36 c | 2.68 ± 0.32 d | 22.70 ± 2.23 e |
C18:1 n-7 | 6.01 ± 0.28 a | 0.47 ± 0.24 b | 4.80 ± 0.65 c | 4.16 ± 0.68 cd | 3.65 ± 0.64 d |
C20:1 n-9 | 0.26 ± 0.07 a | 0.25 ± 0.11 a | 0.14 ± 0.05 a | 0.17 ± 0.06 a | 0.16 ± 0.04 a |
C22:1 | – | – | – | 0.10 ± 0.05 | – |
C24:1 n-9 | – | – | 0.38 ± 0.35 | 1.56 ± 0.22 | 0.50 ± 0.10 |
∑MUFA | 17.95 ± 0.82 a | 36.33 ± 2.72 b | 12.07 ± 0.95 c | 12.13 ± 1.25 c | 29.77 ± 1.82 d |
C16:2 n-6 | 0.41 ± 0.01 | 0.15 ± 0.10 | – | – | 0.23 ± 0.02 |
C16:3 n-4 | 0.33 ± 0.04 | – | – | – | 0.13 ± 0.02 |
C16:3 n-3 | – | – | – | – | 0.10 ± 0.02 |
C16:4 n-3 | 4.40 ± 0.16 a | 0.19 ± 0.04 b | 0.71 ± 0.12 b | 1.57 ± 0.52 c | 2.84 ± 0.55 d |
C16:4 n-1 | 0.40 ± 0.04 | – | – | 0.07 ± 0.03 | 0.18 ± 0.02 |
C18:2 | – | – | 0.08 ± 0.06 | 0.47 ± 0.03 | – |
C18:2 n-6 LA | 3.33 ± 0.13 a | 8.26 ± 0.12 b | 2.80 ± 0.16 c | 0.83 ± 0.14 d | 6.74 ± 0.21 e |
C18:3 n-6 GLA | 0.44 ± 0.03 ac | 0.38 ± 0.03 ac | 0.51 ± 0.13 a | 0.12 ± 0.06 b | 0.38 ± 0.02 c |
C18:3 n-3 ALA | 6.14 ± 0.22 a | 3.12 ± 0.23 b | 2.91 ± 0.26 b | 1.72 ± 0.46 c | 5.59 ± 0.56 a |
C18:4 n-3 SDA | 8.69 ± 0.31 a | 3.79 ± 0.44 b | 7.04 ± 0.71 ab | 3.89 ± 0.97 b | 8.64 ± 0.94 a |
C20:2 n-6 | 0.07 ± 0.03 | 0.57 ± 0.04 | – | – | 0.37 ± 0.10 |
C20:3 | – | 0.63 ± 0.25 | – | – | 0.44 ± 0.21 |
C20:3 n-6 | 0.94 ± 0.25 | 0.90 ± 0.31 | 0.30 ± 0.08 | – | 0.51 ± 0.07 |
C20:3 n-3 | – | tr | – | – | – |
C20:4 | – | 0.07 ± 0.04 | – | – | – |
C20:4 n-6 AA | 10.75 ± 0.36 a | 12.31 ± 0.84 b | 4.55 ± 0.67 c | 1.03 ± 0.16 d | 7.54 ± 0.49 e |
C20:4 n-3 | 0.40 ± 0.05 ac | 0.25 ± 0.08 b | 0.30 ± 0.06 bc | 0.32 ± 0.12 bc | 0.45 ± 0.03 a |
C20:5 n-3 EPA | 3.70 ± 0.22 a | 5.13 ± 0.50 a | 26.79 ± 1.37 b | 39.13 ± 5.84 c | 4.77 ± 0.26 a |
C22:5 n-3 | 0.64 ± 0.10 | – | 0.13 ± 0.03 | 0.28 ± 0.12 | 0.38 ± 0.10 |
∑PUFA | 40.64 ± 1.54 ab | 35.77 ± 2.02 a | 46.11 ± 2.72 b | 49.43 ± 7.24 c | 39.30 ± 1.73 ab |
Indicators | BLD0N1 | BLD0N2 | BLD001 | BLD005 | BLD006 |
---|---|---|---|---|---|
UFA:SFA | 1.42 ± 0.13 a | 2.59 ± 0.16 b | 1.40 ± 0.15 a | 1.70 ± 0.58 a | 2.24 ± 0.14 b |
PUFA:SFA | 0.99 ± 0.09 a | 1.28 ± 0.08 a | 1.11 ± 0.13 a | 1.37 ± 0.48 a | 1.27 ± 0.09 a |
n-6:n-3 PUFA | 0.67 ± 0.01 ab | 1.81 ± 0.11 a | 0.22 ± 0.02 b | 0.04 ± 0.01 b | 0.70 ± 0.10 ab |
AI | 0.72 ± 0.04 a | 0.55 ± 0.03 b | 0.63 ± 0.06 ab | 0.57 ± 0.17 ab | 0.54 ± 0.01 b |
TI | 0.45 ± 0.04 a | 0.40 ± 0.02 ac | 0.32 ± 0.03 bc | 0.23 ± 0.09 b | 0.33 ± 0.03 c |
Indicators | Alaria esculenta | Fucus vesiculosus | Undaria pinnatifida | Gracilaria gracilis | Palmaria palmata | Porphyra spp. | Ulva rigida | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UFA:SFA | 2.42 | [29] | 1.36 1.77, 2.11 2.85 | [37] [48] [3] | 3.90 * | [12] | 0.78 1.87 | [37] [3] | 1.44 | [3] | 1.71 | [3] | 1.13 3.17 | [37] [3] |
PUFA:SFA | 1.62 | [29] | 0.94, 1.26 1.96 | [48] [3] | 3.39 * | [12] | 1.51 | [3] | 1.32 | [3] | 1.09 | [3] | 2.63 | [3] |
n-6:n-3 PUFA | 0.90 | [29] | 0.40 1.21 1.20, 1.95 | [37] [3] [48] | 0.49 | [12] | 0.22 2.48 | [3] [37] | 0.02 | [3] | 0.44 | [3] | 0.03 0.07 0.37 | [3] [15] [37] |
AI | 0.45 | [29] | 0.66 0.74, 0.90 | [3] [48] | 0.13 * | [12] | 0.61 | [3] | 0.80 | [3] | 0.96 | [3] | 0.27 | [3] |
TI | 0.23 | [29] | 0.26 | [3] | 0.37 * | [12] | 0.49 | [3] | 0.20 | [3] | 0.41 | [3] | 0.10 | [3] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, F.; Lopes, D.; da Costa, E.; Conde, T.; Rego, A.; Ribeiro, A.I.; Abreu, M.H.; Domingues, M.R. Seaweed Blends as a Valuable Source of Polyunsaturated and Healthy Fats for Nutritional and Food Applications. Mar. Drugs 2021, 19, 684. https://doi.org/10.3390/md19120684
Marques F, Lopes D, da Costa E, Conde T, Rego A, Ribeiro AI, Abreu MH, Domingues MR. Seaweed Blends as a Valuable Source of Polyunsaturated and Healthy Fats for Nutritional and Food Applications. Marine Drugs. 2021; 19(12):684. https://doi.org/10.3390/md19120684
Chicago/Turabian StyleMarques, Francisca, Diana Lopes, Elisabete da Costa, Tiago Conde, Andreia Rego, Ana Isabel Ribeiro, Maria Helena Abreu, and Maria Rosário Domingues. 2021. "Seaweed Blends as a Valuable Source of Polyunsaturated and Healthy Fats for Nutritional and Food Applications" Marine Drugs 19, no. 12: 684. https://doi.org/10.3390/md19120684
APA StyleMarques, F., Lopes, D., da Costa, E., Conde, T., Rego, A., Ribeiro, A. I., Abreu, M. H., & Domingues, M. R. (2021). Seaweed Blends as a Valuable Source of Polyunsaturated and Healthy Fats for Nutritional and Food Applications. Marine Drugs, 19(12), 684. https://doi.org/10.3390/md19120684