Accuracy Verification of a Computed Tomography-Based Navigation System for Total Hip Arthroplasty in Severe Hip Dysplasia: A Simulation Study Using 3D-Printed Bone Models of Crowe Types II, III, and IV
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
ANOVA | analysis of variance |
ASIS | anterior superior iliac spine |
CT | computed tomography |
DICOM | Digital Imaging and Communications in Medicine |
OTS | Ortoma Treatment Solution |
THA | total hip arthroplasty |
References
- García-Rey, E.; Carbonell-Escobar, R.; Cordero-Ampuero, J.; García-Cimbrelo, E. Outcome of a Hemispherical Porous-Coated Acetabular Component with a Proximally Hydroxyapatite-Coated Anatomical Femoral Component: An Update at 23 to 26 Years’ Follow-Up. Bone Jt. J. 2019, 101-B, 378–385. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Park, J.-W.; Jang, Y.-S. Long-Term Survival (up to 34 Years) of Retained Cementless Anatomic Femoral Stem in Patients <50 Years Old. J. Arthroplast. 2021, 36, 1388–1392. [Google Scholar] [CrossRef]
- McLaughlin, J.R.; Lee, K.R.; Johnson, M.A. Second-Generation Uncemented Total Hip Arthroplasty: A Minimum 20-Year Follow-Up. Bone Jt. Open 2021, 2, 33–39. [Google Scholar] [CrossRef]
- Jacquot, L.; Machenaud, A.; Bonnin, M.P.; Chouteau, J.; ReSurg; Vidalain, J.-P. Survival and Clinical Outcomes at 30 to 35 Years Following Primary Total Hip Arthroplasty with a Cementless Femoral Stem Fully Coated with Hydroxyapatite. J. Arthroplast. 2023, 38, 880–885. [Google Scholar] [CrossRef]
- Lewinnek, G.; Lewis, J.; Tarr, R.; Compere, C.; Zimmerman, J.R. Dislocations after Total Hip-Replacement Arthroplasties. J. Bone Jt. Surg. Am. 1978, 60, 217–220. [Google Scholar] [CrossRef]
- Murray, D.W. The Definition and Measurement of Acetabular Orientation. J. Bone Jt. Surg. Br. 1993, 75, 228–232. [Google Scholar] [CrossRef]
- McCollum, D.; Gray, W. Dislocation after Total Hip Arthroplasty. Causes and Prevention. Clin. Orthop. Relat. Res. 1990, 261, 159–170. [Google Scholar] [CrossRef]
- Biedermann, R.; Tonin, A.; Krismer, M.; Rachbauer, F.; Eibl, G.; Stöckl, B. Reducing the Risk of Dislocation after Total Hip Arthroplasty: The Effect of Orientation of the Acetabular Component: The effect of orientation of the acetabular component. J. Bone Jt. Surg. Br. 2005, 87, 762–769. [Google Scholar] [CrossRef]
- DiGioia, A.; Jaramaz, B.; Blackwell, M.; Simon, D.; Morgan, F.; Moody, J.; Nikou, C.; Colgan, B.; Aston, C.A.; LaBarca, R.S.; et al. Image Guided Navigation System to Measure Intraoperatively Acetabular Implant Alignment. Clin. Orthop. Relat. Res. 1998, 355, 8–22. [Google Scholar] [CrossRef]
- Jolles, B.M.; Genoud, P.; Hoffmeyer, P. Computer-Assisted Cup Placement Techniques in Total Hip Arthroplasty Improve Accuracy of Placement. Clin. Orthop. Relat. Res. 2004, 426, 174–179. [Google Scholar] [CrossRef]
- Shah, A.K.; Lavu, M.S.; Burkhart, R.J.; Hecht, C.J., II; Blackburn, C.; Romeo, N. Robotic-Assistance Is Associated with Better Jt. Outcomes Compared to Conventional Techniques in Surgically Routine Total Hip Arthroplasty: A Propensity-Matched Large Database Study of 3948 Patients. Arch. Orthop. Trauma Surg. 2025, 145, 114. [Google Scholar] [CrossRef]
- Ashkenazi, I.; Habibi, A.; Jacobi, S.; Aggarwal, V.K.; Schwarzkopf, R.; Rozell, J.C. The Role of MRI in the Diagnosis of Aseptic Loosening Following Total Hip Arthroplasty. Arch. Orthop. Trauma Surg. 2024, 144, 4989–4993. [Google Scholar] [CrossRef]
- Bohl, D.D.; Nolte, M.T.; Ong, K.; Lau, E.; Calkins, T.E.; Della Valle, C.J. Computer-Assisted Navigation Is Associated with Reductions in the Rates of Dislocation and Acetabular Component Revision Following Primary Total Hip Arthroplasty. JBJS 2019, 101, 250–256. [Google Scholar] [CrossRef]
- Gausden, E.B.; Popper, J.E.; Sculco, P.K.; Rush, B. Computerized Navigation for Total Hip Arthroplasty Is Associated with Lower Complications and Ninety-Day Readmissions: A Nationwide Linked Analysis. Int. Orthop. 2020, 44, 471–476. [Google Scholar] [CrossRef]
- Ohyama, Y.; Minoda, Y.; Sugama, R.; Masuda, S.; Ohta, Y.; Nakamura, H. A Novel Imageless Accelerometer-Based Navigation System Improves Acetabular Cup Placement Accuracy during Total Hip Arthroplasty in the Lateral Decubitus Position. Arch. Orthop. Trauma Surg. 2024, 144, 2865–2872. [Google Scholar] [CrossRef]
- Hayashi, S.; Kuroda, Y.; Nakano, N.; Matsumoto, T.; Kamenaga, T.; Tsubosaka, M.; Kuroda, R. Accuracy of Portable Navigation during THA in Patients with Severe Developmental Dysplasia of Hip. Arch. Orthop. Trauma Surg. 2024, 144, 2429–2435. [Google Scholar] [CrossRef]
- Greber, E.M.; Pelt, C.E.; Gililland, J.M.; Anderson, M.B.; Erickson, J.A.; Peters, C.L. Challenges in Total Hip Arthroplasty in the Setting of Developmental Dysplasia of the Hip. J. Arthroplasty 2017, 32, S38–S44. [Google Scholar] [CrossRef]
- Tateda, K.; Nagoya, S.; Suzuki, D.; Kosukegawa, I.; Yamashita, T. Acetabular Morphology in Patients with Developmental Dysplasia of the Hip with High Dislocation. Hip Pelvis 2021, 33, 25–32. [Google Scholar] [CrossRef]
- Ueoka, K.; Kabata, T.; Kajino, Y.; Yoshitani, J.; Ueno, T.; Tsuchiya, H. The Accuracy of the Computed Tomography-Based Navigation System in Total Hip Arthroplasty Is Comparable with Crowe Type IV and Crowe Type I Dysplasia: A Case-Control Study. J. Arthroplast. 2019, 34, 2686–2691. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, X.; Lu, Z.-D.; Yang, Y.; Ma, L.; Li, P. Accuracy Analysis of Artificial Intelligence-Assisted Three-Dimensional Preoperative Planning in Total Hip Replacement. Jt. Dis. Relat. Surg. 2023, 34, 537–547. [Google Scholar] [CrossRef]
- Huo, J.; Huang, G.; Han, D.; Wang, X.; Bu, Y.; Chen, Y.; Cai, D.; Zhao, C. Value of 3D Preoperative Planning for Primary Total Hip Arthroplasty Based on Artificial Intelligence Technology. J. Orthop. Surg. Res. 2021, 16, 156. [Google Scholar] [CrossRef]
- Nemati, H.M.; Christensson, A.; Pettersson, A.; Németh, G.; Flivik, G. Precision of Cup Positioning Using a Novel Computed Tomography Based Navigation System in Total Hip Arthroplasty. Medicina 2024, 60, 1589. [Google Scholar] [CrossRef]
- Crowe, J.; Mani, V.; Ranawat, C. Total Hip Replacement in Congenital Dislocation and Dysplasia of the Hip. J. Bone Jt. Surg. Am. 1979, 61, 15–23. [Google Scholar] [CrossRef]
- Hartofilakidis, G.; Karachalios, T. Total Hip Arthroplasty for Congenital Hip Disease. J. Bone Jt. Surg. Am. 2004, 86, 242–250. [Google Scholar] [CrossRef]
- Clavé, A.; Tristan, L.; Desseaux, A.; Gaucher, F.; Lefèvre, C.; Stindel, E. Influence of Experience on Intra- and Inter-Observer Reproducibility of the Crowe, Hartofilakidis and Modified Cochin Classifications. Orthop. Traumatol. Surg. Res. 2016, 102, 155–159. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the Freely Available Easy-to-Use Software “EZR” for Medical Statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Sariali, E.; Mauprivez, R.; Khiami, F.; Pascal-Mousselard, H.; Catonné, Y. Accuracy of the Preoperative Planning for Cementless Total Hip Arthroplasty. A Randomised Comparison between Three-Dimensional Computerised Planning and Conventional Templating. Orthop. Traumatol. Surg. Res. 2012, 98, 151–158. [Google Scholar] [CrossRef]
- Knafo, Y.; Houfani, F.; Zaharia, B.; Egrise, F.; Clerc-Urmès, I.; Mainard, D. Value of 3D Preoperative Planning for Primary Total Hip Arthroplasty Based on Biplanar Weightbearing Radiographs. Biomed Res. Int. 2019, 2019, 1932191. [Google Scholar] [CrossRef]
- Mainard, D.; Barbier, O.; Knafo, Y.; Belleville, R.; Mainard-Simard, L.; Gross, J.-B. Accuracy and Reproducibility of Preoperative Three-Dimensional Planning for Total Hip Arthroplasty Using Biplanar Low-Dose Radiographs: A Pilot Study. Orthop. Traumatol. Surg. Res. 2017, 103, 531–536. [Google Scholar] [CrossRef]
- Kayani, B.; Konan, S.; Ayuob, A.; Ayyad, S.; Haddad, F.S. The Current Role of Robotics in Total Hip Arthroplasty. EFORT Open Reviews 2019, 4, 618–625. [Google Scholar] [CrossRef]
- Nich, C.; Behr, J.; Crenn, V.; Normand, N.; Mouchère, H.; d’Assignies, G. Applications of Artificial Intelligence and Machine Learning for the Hip and Knee Surgeon: Current State and Implications for the Future. Int. Orthop. 2022, 46, 937–944. [Google Scholar] [CrossRef]
- Purnomo, G.; Yeo, S.-J.; Liow, M.H.L. Artificial Intelligence in Arthroplasty. Arthroplasty 2021, 3, 37. [Google Scholar] [CrossRef]
- Dou, Y.; Xiao, J.; Wen, X.; Gao, J.; Tian, H.; Zuo, J. Segmental Uncoverage Ratio Analysis of Crowe Type-IV Developmental Dysplasia of the Hip via 3-Dimensional Implantation Simulation. Arthroplasty 2020, 2, 14. [Google Scholar] [CrossRef]
- Pei, L.; Liu, B.; Wu, Y.; Wang, Y.; Sun, W.; Chang, W.; Zhou, X. Directly Anterior Approach for Total Hip Arthroplasty with an Acetabular Structural Bone Graft for Developmental Dysplasia of the Hip (Crowe III and IV): A Concise 5-Year Follow-up Evaluation. BMC Musculoskelet. Disord. 2024, 25, 1022. [Google Scholar] [CrossRef]
- Wang, X. Total Hip Arthroplasty in Crowe IV Developmental Dysplasia of the Hip. In Principles of Primary Total Hip Arthroplasty; Springer Nature: Singapore, 2022; pp. 93–98. ISBN 9789811936050. [Google Scholar]
- Fujii, Y.; Fujiwara, K.; Tetsunaga, T.; Miyake, T.; Yamada, K.; Endo, H.; Abe, N.; Sugita, N.; Mitsuishi, M.; Inoue, T.; et al. An Analysis of the Characteristics and Improved Use of Newly Developed CT-Based Navigation System in Total Hip Arthroplasty. Acta Med. Okayama 2017, 71, 279–289. [Google Scholar] [CrossRef]
- Moldovan, F. Recent Trends in Bioprinting. Procedia Manuf. 2019, 32, 95–101. [Google Scholar] [CrossRef]
Crowe II Group (n = 10) | Crowe III Group (n = 10) | Crowe IV Group (n = 10) | p-Value | |
---|---|---|---|---|
Age (years) | 60.6 ± 6.7 | 66.3 ± 7.4 | 61.0 ± 6.4 | 0.137 |
Sex (female/male) | 7/3 | 7/3 | 9/1 | 0.195 |
Hip side (left/right) | 6/4 | 5/5 | 7/3 | 0.709 |
Body height (cm) | 157.7 ± 8.0 | 151.8 ± 7.2 | 150.2 ± 7.5 | 0.078 |
Body weight (kg) | 58.8 ± 18.8 | 60.0 ± 6.4 | 50.4 ± 12.4 | 0.255 |
Body mass index (kg/m2) | 23.2 ± 5.7 | 25.9 ± 2.4 | 22.2 ± 4.1 | 0.159 |
Hartofilakidis Classification (A/B/C) | 4/6/0 | 1/9/0 | 0/4/6 | <0.001 |
Crowe II Group (n = 10) | Crowe III Group (n = 10) | Crowe IV Group (n = 10) | Total (n = 30) | |
---|---|---|---|---|
Dice Similarity Coefficient (from 1.00 to 0) | 1.00 ± 0.00 | 0.99 ± 0.01 | 0.99 ± 0.01 | 0.99 ± 0.01 |
Jaccard Index (from 1.00 to 0) | 1.00 ± 0.00 | 0.98 ± 0.02 | 0.98 ± 0.03 | 0.98 ± 0.02 |
Crowe II Group (n = 10) | Crowe III Group (n = 10) | Crowe IV Group (n = 10) | p-Value | |
---|---|---|---|---|
Matching with true acetabulum | ||||
Matching success rate (%) | 50 | 30 | 20 | 0.310 |
Mean deviation of the five reference points (mm) | 0.33 ± 0.28 | 0.44 ± 0.45 | 0.50 ± 0.51 | 0.089 |
Matching with true and false acetabulum | ||||
Matching success rate (%) | 100 | 80 | 70 | 0.321 |
Mean deviation of the five reference points (mm) | 0.08 ± 0.14 | 0.34 ± 0.21 | 0.68 ± 0.45 | <0.05 |
Matching with true and false acetabulum + iliac crest | ||||
Matching success rate (%) | 100 | 100 | 100 | 1.0 |
Mean deviation of the five reference points (mm) | 0.08 ± 0.28 | 0.12 ± 0.33 | 0.14 ± 0.50 | 0.572 |
Matching with True and False Acetabulum (n = 7) | Matching with True and False Acetabulum + Iliac Crest (n = 7) | p-Value | |
---|---|---|---|
Anterior rim (mm) | 0 | 0.14 ± 0.38 | 0.356 |
Posterior rim (mm) | 0.14 ± 0.38 | 0.28 ± 0.49 | 0.356 |
Superior rim (mm) | 0 | 0.14 ± 0.38 | 0.356 |
Inferior rim (mm) | 0.14 ± 0.38 | 0.14 ± 0.38 | 1.0 |
ASIS (mm) | 3.29 ± 2.56 | 0.28 ± 0.49 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okuda, R.; Tetsunaga, T.; Yamada, K.; Tetsunaga, T.; Koura, T.; Inoue, T.; Masada, Y.; Okazaki, Y.; Ozaki, T. Accuracy Verification of a Computed Tomography-Based Navigation System for Total Hip Arthroplasty in Severe Hip Dysplasia: A Simulation Study Using 3D-Printed Bone Models of Crowe Types II, III, and IV. Medicina 2025, 61, 973. https://doi.org/10.3390/medicina61060973
Okuda R, Tetsunaga T, Yamada K, Tetsunaga T, Koura T, Inoue T, Masada Y, Okazaki Y, Ozaki T. Accuracy Verification of a Computed Tomography-Based Navigation System for Total Hip Arthroplasty in Severe Hip Dysplasia: A Simulation Study Using 3D-Printed Bone Models of Crowe Types II, III, and IV. Medicina. 2025; 61(6):973. https://doi.org/10.3390/medicina61060973
Chicago/Turabian StyleOkuda, Ryuichiro, Tomonori Tetsunaga, Kazuki Yamada, Tomoko Tetsunaga, Takashi Koura, Tomohiro Inoue, Yasutaka Masada, Yuki Okazaki, and Toshifumi Ozaki. 2025. "Accuracy Verification of a Computed Tomography-Based Navigation System for Total Hip Arthroplasty in Severe Hip Dysplasia: A Simulation Study Using 3D-Printed Bone Models of Crowe Types II, III, and IV" Medicina 61, no. 6: 973. https://doi.org/10.3390/medicina61060973
APA StyleOkuda, R., Tetsunaga, T., Yamada, K., Tetsunaga, T., Koura, T., Inoue, T., Masada, Y., Okazaki, Y., & Ozaki, T. (2025). Accuracy Verification of a Computed Tomography-Based Navigation System for Total Hip Arthroplasty in Severe Hip Dysplasia: A Simulation Study Using 3D-Printed Bone Models of Crowe Types II, III, and IV. Medicina, 61(6), 973. https://doi.org/10.3390/medicina61060973