Serial Changes in Vitamin D Status in Patients During Severe Acute Respiratory Distress Syndrome and Extracorporeal Membrane Oxygenation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Blood Samples
2.4. Vitamin D Status
2.5. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.2. Vitamin D and Severity of Disease
3.3. Vitamin D and Inflammation
3.4. Temporal Changes in Vitamin D Levels During ICU Stay
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1,25(OH)2D | 1,25-dihydroxyvitamin D |
25(OH)D | 25-hydroxyvitamin D |
ARDS | Acute respiratory distress syndrome |
BMI | Body mass index |
CRP | C-reactive protein |
COVID-19 | Coronavirus disease 2019 |
ECMO | Extracorporeal membrane oxygenation |
ICU | Intensive care unit |
IL-6 | Interleukin-6 |
IMV | Invasive mechanical ventilation |
LOS | Length of stay |
PTH | Parathyroid hormone |
SAPS | Simplified Acute Physiology Score III |
References
- Gajkowski, E.F.; Herrera, G.; Hatton, L.; Velia Antonini, M.; Vercaemst, L.; Cooley, E. ELSO Guidelines for Adult and Pediatric Extracorporeal Membrane Oxygenation Circuits. ASAIO J. 2022, 68, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.L.; Nan, D.; Fernandez-Ayala, M.; Garcia-Unzueta, M.; Hernandez-Hernandez, M.A.; Lopez-Hoyos, M.; Munoz-Cacho, P.; Olmos, J.M.; Gutierrez-Cuadra, M.; Ruiz-Cubillan, J.J.; et al. Vitamin D Status in Hospitalized Patients with SARS-CoV-2 Infection. J. Clin. Endocrinol. Metab. 2021, 106, e1343–e1353. [Google Scholar] [CrossRef]
- Katz, J. Increased risk for Covid-19 in patients with Vitamin D deficiency. Nutrition 2021, 90, 111361. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, M.; Neisi, N.; Parsanahad, M.; Rasti, M.; Nashibi, R.; Cheraghian, B. Correlation of vitamin D levels with serum parameters in Covid-19 patients. Clin. Nutr. ESPEN 2023, 55, 325–331. [Google Scholar] [CrossRef]
- Rust, P.; Ekmekcioglu, C. The Role of Diet and Specific Nutrients during the COVID-19 Pandemic: What Have We Learned over the Last Three Years? Int. J. Environ. Res. Public Health 2023, 20, 5400. [Google Scholar] [CrossRef]
- Amrein, K.; Hoffmann, M.; Lobmeyr, E.; Martucci, G. Vitamin D in critical care: Where are we now and what is next? Curr. Opin. Crit. Care 2021, 27, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Jamilian, A.; Ghalichi, F.; Hamedi Kalajahi, F.; Radkhah, N.; Jourabchi, N.; Musazadeh, V.; Amini-Salehi, E.; Zarezadeh, M.; Ostadrahimi, A. The role of vitamin D in outcomes of critical care in COVID-19 patients: Evidence from an umbrella meta-analysis of interventional and observational studies. Public Health Nutr. 2024, 27, e127. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Dantas Damascena, A.; Galvao Azevedo, L.M.; de Almeida Oliveira, T.; da Mota Santana, J. Vitamin D deficiency aggravates COVID-19: Systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 1308–1316. [Google Scholar] [CrossRef]
- Delrue, C.; Speeckaert, R.; Delanghe, J.R.; Speeckaert, M.M. Vitamin D Deficiency: An Underestimated Factor in Sepsis? Int. J. Mol. Sci. 2023, 24, 2924. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Bikle, D.; Hewison, M.; Lazaretti-Castro, M.; Formenti, A.M.; Gupta, A.; Madhavan, M.V.; Nair, N.; Babalyan, V.; Hutchings, N.; et al. MECHANISMS IN ENDOCRINOLOGY: Vitamin D and COVID-19. Eur. J. Endocrinol. 2020, 183, R133–R147. [Google Scholar] [CrossRef]
- Ismailova, A.; White, J.H. Vitamin D, infections and immunity. Rev. Endocr. Metab. Disord. 2022, 23, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Tay, M.Z.; Poh, C.M.; Renia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Ashique, S.; Gupta, K.; Gupta, G.; Mishra, N.; Singh, S.K.; Wadhwa, S.; Gulati, M.; Dureja, H.; Zacconi, F.; Oliver, B.G.; et al. Vitamin D-A prominent immunomodulator to prevent COVID-19 infection. Int. J. Rheum. Dis. 2023, 26, 13–30. [Google Scholar] [CrossRef]
- Cannell, J.J.; Grant, W.B.; Holick, M.F. Vitamin D and inflammation. Dermatoendocrinol 2014, 6, e983401. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.; Talwar, D.; McMillan, D.C.; Stefanowicz, F.; O’Reilly, D.S. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am. J. Clin. Nutr. 2012, 95, 64–71. [Google Scholar] [CrossRef]
- Moslemi, E.; Musazadeh, V.; Kavyani, Z.; Naghsh, N.; Shoura, S.M.S.; Dehghan, P. Efficacy of vitamin D supplementation as an adjunct therapy for improving inflammatory and oxidative stress biomarkers: An umbrella meta-analysis. Pharmacol. Res. 2022, 186, 106484. [Google Scholar] [CrossRef] [PubMed]
- Reid, D.; Toole, B.J.; Knox, S.; Talwar, D.; Harten, J.; O’Reilly, D.S.; Blackwell, S.; Kinsella, J.; McMillan, D.C.; Wallace, A.M. The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. Am. J. Clin. Nutr. 2011, 93, 1006–1011. [Google Scholar] [CrossRef]
- Binkley, N.; Coursin, D.; Krueger, D.; Iglar, P.; Heiner, J.; Illgen, R.; Squire, M.; Lappe, J.; Watson, P.; Hogan, K. Surgery alters parameters of vitamin D status and other laboratory results. Osteoporos. Int. 2017, 28, 1013–1020. [Google Scholar] [CrossRef]
- Barker, T.; May, H.T.; Doty, J.R.; Lappe, D.L.; Knowlton, K.U.; Carlquist, J.; Konery, K.; Inglet, S.; Chisum, B.; Galenko, O.; et al. Vitamin D supplementation protects against reductions in plasma 25-hydroxyvitamin D induced by open-heart surgery: Assess-d trial. Physiol. Rep. 2021, 9, e14747. [Google Scholar] [CrossRef]
- Amrein, K.; Schnedl, C.; Holl, A.; Riedl, R.; Christopher, K.B.; Pachler, C.; Urbanic Purkart, T.; Waltensdorfer, A.; Munch, A.; Warnkross, H.; et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: The VITdAL-ICU randomized clinical trial. JAMA 2014, 312, 1520–1530. [Google Scholar] [CrossRef]
- Czarnik, T.; Czarnik, A.; Gawda, R.; Gawor, M.; Piwoda, M.; Marszalski, M.; Maj, M.; Chrzan, O.; Said, R.; Rusek-Skora, M.; et al. Vitamin D kinetics in the acute phase of critical illness: A prospective observational study. J. Crit. Care 2018, 43, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.; Lee, P.; Reynolds, C.; Nguyen, N.D.; Myburgh, J.; Eisman, J.A.; Center, J.R. Significant perturbation of vitamin D-parathyroid-calcium axis and adverse clinical outcomes in critically ill patients. Intensive Care Med. 2013, 39, 267–274. [Google Scholar] [CrossRef]
- Amrein, K.; Papinutti, A.; Mathew, E.; Vila, G.; Parekh, D. Vitamin D and critical illness: What endocrinology can learn from intensive care and vice versa. Endocr. Connect. 2018, 7, R304–R315. [Google Scholar] [CrossRef]
- Moreno, R.P.; Metnitz, P.G.; Almeida, E.; Jordan, B.; Bauer, P.; Campos, R.A.; Iapichino, G.; Edbrooke, D.; Capuzzo, M.; Le Gall, J.R.; et al. SAPS 3--From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005, 31, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Haslacher, H.; Gerner, M.; Hofer, P.; Jurkowitsch, A.; Hainfellner, J.; Kain, R.; Wagner, O.F.; Perkmann, T. Usage Data and Scientific Impact of the Prospectively Established Fluid Bioresources at the Hospital-Based MedUni Wien Biobank. Biopreservation Biobanking 2018, 16, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M.; Endocrine, S. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Ross, A.C.; Taylor, C.L.; Yaktine, A.L.; Del Valle, H.B. Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Kostenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef]
- Kimmelman, J.; Mogil, J.S.; Dirnagl, U. Distinguishing between exploratory and confirmatory preclinical research will improve translation. PLoS Biol. 2014, 12, e1001863. [Google Scholar] [CrossRef]
- Landis, S.C.; Amara, S.G.; Asadullah, K.; Austin, C.P.; Blumenstein, R.; Bradley, E.W.; Crystal, R.G.; Darnell, R.B.; Ferrante, R.J.; Fillit, H.; et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 2012, 490, 187–191. [Google Scholar] [CrossRef]
- Almerighi, C.; Sinistro, A.; Cavazza, A.; Ciaprini, C.; Rocchi, G.; Bergamini, A. 1Alpha,25-dihydroxyvitamin D3 inhibits CD40L-induced pro-inflammatory and immunomodulatory activity in human monocytes. Cytokine 2009, 45, 190–197. [Google Scholar] [CrossRef]
- El Abd, A.; Dasari, H.; Dodin, P.; Trottier, H.; Ducharme, F.M. The effects of vitamin D supplementation on inflammatory biomarkers in patients with asthma: A systematic review and meta-analysis of randomized controlled trials. Front. Immunol. 2024, 15, 1335968. [Google Scholar] [CrossRef]
- Vassiliou, A.G.; Jahaj, E.; Orfanos, S.E.; Dimopoulou, I.; Kotanidou, A. Vitamin D in infectious complications in critically ill patients with or without COVID-19. Metab. Open 2021, 11, 100106. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Kong, J.; Duan, Y.; Szeto, F.L.; Liao, A.; Madara, J.L.; Li, Y.C. Increased NF-kappaB activity in fibroblasts lacking the vitamin D receptor. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E315–E322. [Google Scholar] [CrossRef] [PubMed]
- Laird, E.; McNulty, H.; Ward, M.; Hoey, L.; McSorley, E.; Wallace, J.M.; Carson, E.; Molloy, A.M.; Healy, M.; Casey, M.C.; et al. Vitamin D deficiency is associated with inflammation in older Irish adults. J. Clin. Endocrinol. Metab. 2014, 99, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.; de Courten, M.P.J.; Forbes, J.; de Courten, B. Serum 25-hydroxyvitamin D concentrations are associated with nuclear factor kappa-B activity but not with inflammatory markers in healthy normoglycemic adults. J. Steroid Biochem. Mol. Biol. 2018, 177, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Saponaro, F.; Franzini, M.; Okoye, C.; Antognoli, R.; Campi, B.; Scalese, M.; Neri, T.; Carrozzi, L.; Monzani, F.; Zucchi, R.; et al. Is There a Crucial Link Between Vitamin D Status and Inflammatory Response in Patients With COVID-19? Front. Immunol. 2021, 12, 745713. [Google Scholar] [CrossRef]
- Wang, L. C-reactive protein levels in the early stage of COVID-19. Med. Mal. Infect. 2020, 50, 332–334. [Google Scholar] [CrossRef]
- Tan, C.; Huang, Y.; Shi, F.; Tan, K.; Ma, Q.; Chen, Y.; Jiang, X.; Li, X. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J. Med. Virol. 2020, 92, 856–862. [Google Scholar] [CrossRef]
- Benskin, L.L. A Basic Review of the Preliminary Evidence That COVID-19 Risk and Severity Is Increased in Vitamin D Deficiency. Front. Public Health 2020, 8, 513. [Google Scholar] [CrossRef]
- Orchard, L.; Baldry, M.; Nasim-Mohi, M.; Monck, C.; Saeed, K.; Grocott, M.P.W.; Ahilanandan, D. Vitamin-D levels and intensive care unit outcomes of a cohort of critically ill COVID-19 patients. Clin. Chem. Lab. Med. 2021, 59, 1155–1163. [Google Scholar] [CrossRef]
- Karampela, I.; Stratigou, T.; Antonakos, G.; Kounatidis, D.; Vallianou, N.G.; Tsilingiris, D.; Dalamaga, M. 25-hydroxyvitamin D and parathyroid hormone in new onset sepsis: A prospective study in critically ill patients. Metab. Open 2024, 23, 100296. [Google Scholar] [CrossRef] [PubMed]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef] [PubMed]
- Haug, C.J.; Aukrust, P.; Haug, E.; Morkrid, L.; Muller, F.; Froland, S.S. Severe deficiency of 1,25-dihydroxyvitamin D3 in human immunodeficiency virus infection: Association with immunological hyperactivity and only minor changes in calcium homeostasis. J. Clin. Endocrinol. Metab. 1998, 83, 3832–3838. [Google Scholar] [CrossRef] [PubMed]
- Kuno, H.; Kurian, S.M.; Hendy, G.N.; White, J.; deLuca, H.F.; Evans, C.O.; Nanes, M.S. Inhibition of 1,25-dihydroxyvitamin D3 stimulated osteocalcin gene transcription by tumor necrosis factor-alpha: Structural determinants within the vitamin D response element. Endocrinology 1994, 134, 2524–2531. [Google Scholar] [CrossRef]
- Noyola-Martinez, N.; Diaz, L.; Zaga-Clavellina, V.; Avila, E.; Halhali, A.; Larrea, F.; Barrera, D. Regulation of CYP27B1 and CYP24A1 gene expression by recombinant pro-inflammatory cytokines in cultured human trophoblasts. J. Steroid Biochem. Mol. Biol. 2014, 144 Pt A, 106–109. [Google Scholar] [CrossRef]
- Schrumpf, J.A.; Amatngalim, G.D.; Veldkamp, J.B.; Verhoosel, R.M.; Ninaber, D.K.; Ordonez, S.R.; van der Does, A.M.; Haagsman, H.P.; Hiemstra, P.S. Proinflammatory Cytokines Impair Vitamin D-Induced Host Defense in Cultured Airway Epithelial Cells. Am. J. Respir. Cell Mol. Biol. 2017, 56, 749–761. [Google Scholar] [CrossRef]
- Geiger, C.; McNally, J.D.; Christopher, K.B.; Amrein, K. Vitamin D in the critically ill—Update 2024. Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 515–522. [Google Scholar] [CrossRef]
n = 24 | |
---|---|
Age, years (SD) | 59 (±7) |
Sex, male, no. (%) | 19 (79%) |
COVID-19-positive, no. (%) | 19 (79%) |
BMI, kg/m2, (SD) | 29.2 (±6) |
ICU length of stay, days (SD) | 36 (±29) |
SAPS III score, (SD) | 63 (±12) |
Pre-ECMO IMV duration, days (SD) | 6 (±5.5) |
IMV duration, days (SD) | 21 (±8) |
PaO2/FiO2 pre-ECMO (SD) | 99 (±74) |
Ventilator-free days till day 28 on ICU | 4.1 (±6) |
Death at ICU | 11 (46%) |
ECMO duration, days | 19 (±14) |
Vitamin D substitution (Oleovit D3, Cholecalciferol; 400 IU/gtt.) | |
12,000–16,000 IU per week | 11 (46%) |
4000 IU per 48 h | 1 (4%) |
800 IU daily | 2 (8%) |
50,400 IU daily | 1 (4%) |
No substitution | 9 (38%) |
Comorbidities | |
Arterial hypertension, no. (%) | 12 (50%) |
Chronic heart disease, no. (%) | 4 (17%) |
Obesity, no. (%) | 5 (21%) |
Diabetes mellitus, no. (%) | 6 (25%) |
Chronic respiratory disease, no. (%) | 3 (13%) |
Chronic kidney disease, no. (%) | 0 (0%) |
Cause of death | n = 11 |
Sepsis, no. (%) | 1 (4%) |
Multiorgan failure, no. (%) | 6 (25%) |
Intracerebral bleeding, no. (%) | 2 (8%) |
COVID-19 ARDS | 2 (8%) |
Early; Day 0–5 (Mean, SD) | Middle; Day 6–11 (Mean, SD) | Late; Day 12–17 (Mean, SD) | |
---|---|---|---|
1,25(OH)2D, pg/mL | 29.0 (±16.7) | 20.9 (±17) | 24.8 (±13.4) |
25(OH)D, nmol/L | 40.0 (±16.9) | 44.1 (±18.3) | 49.5 (±22) |
CRP, mg/dL | 15.6 (±6.7) | 11.8 (±7.2) | 13.3 (±7.5) |
Fibrinogen, mg/dL | 561.9 (±187.1) | 509 (±175.3) | 455.7 (±125.8) |
IL-6, pg/mL | 129 (±85.4) | 312 (±796.4) | 218.9 (±293.4) |
TNF-alpha, pg/mL | 8158.7 (±4191.7) | 6393.7 (±2526.9) | 6665.6 (±4018) |
Procalcitonin, ng/mL | 3.2 (±9.2) | 1.1 (±2.8) | 1.1 (±1.6) |
Leukocytes, G/L | 11.3 (±4.6) | 10.3 (±3.9) | 9.6 (±2.7) |
Lactate, mmol/L | 1.3 (±0.6) | 1.2 (±0.8) | 1.1 (±0.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermann, M.; Poslussny, J.; Gerger, G.; Haslacher, H.; Mayrhofer, G.; Tretter, V.E.; Maleczek, M.; Ekmekcioglu, C. Serial Changes in Vitamin D Status in Patients During Severe Acute Respiratory Distress Syndrome and Extracorporeal Membrane Oxygenation. Medicina 2025, 61, 901. https://doi.org/10.3390/medicina61050901
Hermann M, Poslussny J, Gerger G, Haslacher H, Mayrhofer G, Tretter VE, Maleczek M, Ekmekcioglu C. Serial Changes in Vitamin D Status in Patients During Severe Acute Respiratory Distress Syndrome and Extracorporeal Membrane Oxygenation. Medicina. 2025; 61(5):901. https://doi.org/10.3390/medicina61050901
Chicago/Turabian StyleHermann, Martina, Jelena Poslussny, Gernot Gerger, Helmuth Haslacher, Georg Mayrhofer, Verena Eva Tretter, Mathias Maleczek, and Cem Ekmekcioglu. 2025. "Serial Changes in Vitamin D Status in Patients During Severe Acute Respiratory Distress Syndrome and Extracorporeal Membrane Oxygenation" Medicina 61, no. 5: 901. https://doi.org/10.3390/medicina61050901
APA StyleHermann, M., Poslussny, J., Gerger, G., Haslacher, H., Mayrhofer, G., Tretter, V. E., Maleczek, M., & Ekmekcioglu, C. (2025). Serial Changes in Vitamin D Status in Patients During Severe Acute Respiratory Distress Syndrome and Extracorporeal Membrane Oxygenation. Medicina, 61(5), 901. https://doi.org/10.3390/medicina61050901