The Role of Mid-Trimester BUN and Creatinine Assessment in Predicting Preeclampsia: Retrospective Case–Control Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
PE | Preeclampsia |
BUN | Blood urea nitrogen |
ACOG | American College of Obstetricians and Gynecologists |
SPSS | Statistical Package for the Social Sciences |
Ors | Odds ratios |
Cis | Confidence intervals |
ROC | Receiver operating characteristic |
AUC | Area under the curve |
PPV | Positive predictive value |
NPV | Negative predictive value |
References
- Duley, L. The global impact of pre-eclampsia and eclampsia. Semin. Perinatol. 2009, 33, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Say, L.; Chou, D.; Gemmill, A.; Tunçalp, Ö.; Moller, A.B.; Daniels, J.; Gülmezoglu, A.M.; Temmerman, M.; Alkema, L. Global causes of maternal death: A WHO systematic analysis. Lancet Glob. Health 2014, 2, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef]
- Serra, B.; Mendoza, M.; Scazzocchio, E.; Meler, E.; Nolla, M.; Sabrià, E.; Rodríguez, I.; Carreras, E. A new model for screening for early-onset preeclampsia. Am. J. Obstet. Gynecol. 2020, 222, 608. [Google Scholar] [CrossRef] [PubMed]
- van der Merwe, J.L.; Hall, D.R.; Wright, C.; Schubert, P.; Grove, D. Are early and late preeclampsia distinct subclasses of the disease–what does the placenta reveal? Hypertens Pregnancy 2010, 29, 457–467. [Google Scholar] [CrossRef]
- Litwinska, M.; Litwinska, E.; Astudillo, A.; Syngelaki, A.; Wright, A.; Nicolaides, K.H. Stratification of pregnancy care based on risk of pre-eclampsia derived from biophysical and biochemical markers at 19–24 weeks’ gestation. Ultrasound Obstet. Gynecol. 2021, 58, 360–368. [Google Scholar] [CrossRef]
- Döbert, M.; Wright, A.; Varouxaki, A.N.; Mu, A.C.; Syngelaki, A.; Rehal, A.; Delgado, J.L.; Akolekar, R.; Muscettola, G.; Janga, D.; et al. STATIN trial: Predictive performance of competing-risks model in screening for pre-eclampsia at 35–37 weeks’ gestation. Ultrasound Obstet. Gynecol. 2022, 59, 69–75. [Google Scholar] [CrossRef]
- van der Graaf, A.M.; Toering, T.J.; Faas, M.M.; Lely, A.T. From preeclampsia to renal disease: A role of angiogenic factors and the renin-angiotensin aldosterone system? Nephrol. Dial. Transplant. 2012, 27, iii51–iii57. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists (ACOG). ACOG Practice Bulletin No. 222: Gestational Hypertension and Preeclampsia. Obstet. Gynecol. 2020, 135, 237–260. [Google Scholar] [CrossRef]
- Gonzalez Suarez, M.L.; Kattah, A.; Grande, J.P.; Garovic, V.D. Renal disorders in pregnancy: Core curriculum 2019. Am. J. Kidney Dis. 2019, 73, 119–130. [Google Scholar] [CrossRef]
- Conrad, K.P.; Davison, J.M. The renal circulation in normal pregnancy and preeclampsia: Is there a place for relaxin? Am. J. Physiol. Renal Physiol. 2014, 306, F1121–F1135. [Google Scholar] [CrossRef]
- Redman, C.W.; Sargent, I.L. Latest advances in understanding preeclampsia. Science. 2005, 308, 1592–1594. [Google Scholar] [CrossRef]
- Gathiram, P.; Moodley, J. Pre-eclampsia: Its pathogenesis and pathophysiolgy. Cardiovasc. J. Afr. 2016, 27, 71–78. [Google Scholar] [CrossRef]
- Myatt, L. The prediction of preeclampsia: The way forward. Am. J. Obstet. Gynecol. 2022, 226, S1102–S1107.e8. [Google Scholar] [CrossRef] [PubMed]
- Pankiewicz, K.; Fijałkowska, A.; Issat, T.; Maciejewski, T.M. Insight into the key points of preeclampsia pathophysiology: Uterine artery remodeling and the role of microRNAs. Int. J. Mol. Sci. 2021, 22, 3132. [Google Scholar] [CrossRef] [PubMed]
- Pijnenborg, R.; Dixon, G.; Robertson, W.B.; Brosens, I. Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta 1980, 1, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Fujiwara, H.; Konishi, I. Mechanism of maternal vascular remodeling during human pregnancy. Reprod. Med. Biol. 2012, 11, 27–36. [Google Scholar] [CrossRef]
- Kornacki, J.; Olejniczak, O.; Sibiak, R.; Gutaj, P.; Wender-Ożegowska, E. Pathophysiology of pre-eclampsia: Two theories of the development of the disease. Int. J. Mol. Sci. 2023, 25, 307. [Google Scholar] [CrossRef]
- Lee, N.M.W.; Chaemsaithong, P.; Poon, L.C. Prediction of preeclampsia in asymptomatic women. Best Pract. Res. Clin. Obstet. Gynaecol. 2024, 92, 102436. [Google Scholar] [CrossRef]
- Gallo, D.M.; Wright, D.; Casanova, C.; Campanero, M.; Nicolaides, K.H. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 19–24 weeks’ gestation. Am. J. Obstet. Gynecol. 2016, 214, 619.e1–619.e17. [Google Scholar] [CrossRef]
- Tan, M.Y.; Wright, D.; Syngelaki, A.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; Greco, E.; Wright, A.; Maclagan, K.; et al. Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: Results of SPREE. Ultrasound Obstet. Gynecol. 2018, 51, 743–750. [Google Scholar] [CrossRef]
- Thadhani, R.; Lemoine, E.; Rana, S.; Costantine, M.M.; Calsavara, V.F.; Boggess, K.; Wylie, B.J.; Moore Simas, T.A.; Louis, J.M.; Espinoza, J.; et al. Circulating angiogenic factor levels in hypertensive disorders of pregnancy. NEJM Evid. 2022, 1, EVIDoa2200161. [Google Scholar] [CrossRef]
- O’Gorman, N.; Wright, D.; Poon, L.C.; Rolnik, D.L.; Syngelaki, A.; Nicolaides, K.H. Multicenter screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation: Comparison with NICE guidelines and ACOG recommendations. Ultrasound Obstet. Gynecol. 2017, 49, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Plasencia, W.; Maiz, N.; Poon, L.; Yu, C.; Nicolaides, K.H. Uterine artery Doppler at 11+0 to 13+6 weeks and 21+0 to 24+6 weeks in the prediction of pre-eclampsia. Ultrasound Obstet. Gynecol. 2008, 32, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Cnossen, J.S.; Vollebregt, K.C.; de Vrieze, N.; ter Riet, G.; Mol, B.W.; Franx, A.; Khan, K.S.; van der Post, J.A. Accuracy of mean arterial pressure and blood pressure measurements in predicting pre-eclampsia: Systematic review and meta-analysis. BMJ 2008, 336, 1117–1120. [Google Scholar] [CrossRef]
- Cnossen, J.S.; de Ruyter-Hanhijärvi, H.; van der Post, J.A.; Mol, B.W.; Khan, K.S.; ter Riet, G. Accuracy of serum uric acid determination in predicting pre-eclampsia: A systematic review. Acta Obstet. Gynecol. Scand. 2006, 85, 519–525. [Google Scholar] [CrossRef] [PubMed]
- D’Anna, R.; Baviera, G.; Scilipoti, A.; Leonardi, I.; Leo, R. The clinical utility of serum uric acid measurements in pre-eclampsia and transient hypertension in pregnancy. Panminerva Med. 2000, 42, 101–103. [Google Scholar]
- Bainbridge, S.A.; Roberts, J.M. Uric acid as a pathogenic factor in preeclampsia. Placenta 2008, 29 (Suppl. A), S67–S72. [Google Scholar] [CrossRef]
- Dunlop, W. Serial changes in renal haemodynamics during normal human pregnancy. Br. J. Obstet. Gynaecol. 1981, 88, 1–9. [Google Scholar] [CrossRef]
Parameters | Group 1 (%) | Group 2 (%) | Group 3 (%) | Total (%) | p-Value* |
---|---|---|---|---|---|
Gravida (number) | |||||
1 | 108 (72) | 39 (67.2) | 33 (75) | 180 (71.4) | 0.851 |
2 | 27 (18) | 13 (22.4) | 6 (13.6) | 46 (18.3) | |
3 | 15 (10) | 6 (10.3) | 5 (11.4) | 26 (10.3) | |
Parity (number) | |||||
0 | 124 (82.7) | 44 (77.2) | 35 (79.5) | 203 (80.9) | 0.907 |
1 | 23 (15.3) | 11 (19.3) | 8 (18.2) | 42 (16.7) | |
2 | 3 (2) | 2 (3.5) | 1 (2.3) | 6 (2.4) |
Parameters | Group 1 | Group 2 | Group 3 | p-Value * |
---|---|---|---|---|
GW (weeks) | 20.91 ± 1.84 | 20.84 ± 1.83 | 20.77 ± 1.52 | 0.959 |
21.00 (18.00–24.00) | 21.00 (18.00–24.00) | 21.00 (18.00–24.00) | ||
BMI (kg/m2) | 24.08 ± 1.14 | 24.15 ± 0.97 | 24.23 ± 0.99 | 0.739 |
24.10 (21.60–26.70) | 24.15 (21.80–26.70) | 24.15 (22.40–26.70) | ||
Age (years) | 27.05 ± 4.47 | 25.98 ± 4.17 | 26.45 ± 5.21 | 0.299 |
26.00 (18.00–34.00) | 27.00 (19.00–32.00) | 26.00 (18.00–34.00) | ||
Birth Week (weeks) | 38.20 ± 1.30 | 37.50 ± 1.51 | 31.33 ± 2.95 | 0.002 |
38.00 (38.00–40.00) | 37.00 (36.00–40.00) | 31.00 (28.00–37.00) | ||
BUN (mg/dL) | 14.91 ± 4.47 | 18.23 ± 7.00 | 16.01 ± 5.95 | 0.001 |
14.00 (8.00–34.32) a | 18.00 (5.00–42.00) b | 15.00 (8.00–41.00) ab | ||
Crea. (mg/dL) | 0.47 ± 0.10 | 0.53 ± 0.14 | 0.55 ± 0.15 | <0.001 |
0.46 (0.31–0.95) a | 0.50 (0.29–0.89) b | 0.53 (0.32–1.00) b | ||
BUN/Crea. ratio | 32.26 ± 9.69 | 34.87 ± 11.89 | 29.52 ± 9.21 | 0.031 |
30.92 (14.00–72.22) ab | 32.75 (7.58–61.54) a | 28.87 (9.76–60.29) b |
Univariate | Multivariate 1 | Multivariate 2 | ||||
---|---|---|---|---|---|---|
OR (%95 CI) | p-Value | OR (%95 CI) | p-Value | OR (%95 CI) | p-Value | |
BUN (mg/dL) | 1.083 | 1.05 | ||||
(1.031–1.139) | 0.002 | (0.996–1.108) | 0.069 | --- | --- | |
Crea. (mg/dL) | 112.344 | 59.748 | ||||
(11.649–1083.416) | <0.001 | (5.214–684.706) | 0.001 | --- | --- | |
BUN/Crea. ratio | 1.003 | 1.002 | ||||
(0.979–1.028) | 0.818 | --- | --- | (0.978–1.028) | 0.845 |
Parameters | Cut-Off Value | AUC (%95 CI) | p-Value | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|---|
BUN (mg/dL) | ≥16.2 | 0.614 (0.539–0.689) | 0.002 | 52.94 | 74 | 58.06 | 69.81 |
Crea. (mg/dL) | ≥0.58 | 0.644 (0.574–0.715) | <0.001 | 37.25 | 88 | 67.86 | 67.35 |
BUN/Crea. ratio | --- | 0.503 (0.429–0.577) | 0.936 | --- | --- | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavak, E.C.; Akcabay, C.; Demircan, M.; Batmaz, I.; Sanli, C.; Senocak, A.; Haliscelik, M.A.; Onat, M.; Tepe, B.; Kavak, S.B. The Role of Mid-Trimester BUN and Creatinine Assessment in Predicting Preeclampsia: Retrospective Case–Control Study. Medicina 2025, 61, 746. https://doi.org/10.3390/medicina61040746
Kavak EC, Akcabay C, Demircan M, Batmaz I, Sanli C, Senocak A, Haliscelik MA, Onat M, Tepe B, Kavak SB. The Role of Mid-Trimester BUN and Creatinine Assessment in Predicting Preeclampsia: Retrospective Case–Control Study. Medicina. 2025; 61(4):746. https://doi.org/10.3390/medicina61040746
Chicago/Turabian StyleKavak, Ebru Celik, Cigdem Akcabay, Meryem Demircan, Ibrahim Batmaz, Cengiz Sanli, Ahmet Senocak, Mesut Ali Haliscelik, Miray Onat, Batuhan Tepe, and Salih Burcin Kavak. 2025. "The Role of Mid-Trimester BUN and Creatinine Assessment in Predicting Preeclampsia: Retrospective Case–Control Study" Medicina 61, no. 4: 746. https://doi.org/10.3390/medicina61040746
APA StyleKavak, E. C., Akcabay, C., Demircan, M., Batmaz, I., Sanli, C., Senocak, A., Haliscelik, M. A., Onat, M., Tepe, B., & Kavak, S. B. (2025). The Role of Mid-Trimester BUN and Creatinine Assessment in Predicting Preeclampsia: Retrospective Case–Control Study. Medicina, 61(4), 746. https://doi.org/10.3390/medicina61040746