Comparison of Lower Extremity Alignment among Taekwondo Athletes of Various Subdisciplines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measurement Tools
2.4. LEA Measurement
2.4.1. LEA in the Standing Position
2.4.2. LEA in the Supine Position
2.4.3. LEA in the Prone Position
2.5. Statistical Analysis
3. Results
Comparison of LEA among Taekwondo Athletes by Subdiscipline
4. Discussion
4.1. Comparison of LEA in Taekwondo Athletes’ Dominant Leg
4.2. Comparison of LEA in Taekwondo Athletes’ Nondominant Leg
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreira, P.V.S.; Franchini, E.; Fernandes, U.; Ervilha, M.F.G.; Cardozo, A.C.; Gonçalves, M. Relationships of the expertise level of taekwondo athletes with electromyographic, kinematic and ground reaction force performance indicators during the dollyo chagui kick. Arch. Budo 2018, 14, 59–69. [Google Scholar]
- Thibordee, S.; Prasartwuth, O. Effectiveness of roundhouse kick in elite Taekwondo athletes. J. Electromyogr. Kinesiol. 2014, 24, 353–358. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Tang, W.-T.; Peng, Y.-C.; Liu, T.-T.; Chang, W.-G.; Huang, T.-Y.; Hamill, J. Differences in kick-leg kinematics in various side-kick heights. Eur. J. Sport Sci. 2023, 23, 2170–2177. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-T.; Lin, Y.-C.; Tang, W.-T.; Hamill, J.; Chang, J.-S. Lower-limb kinematic characteristics of Taekwondo kicks at different attack angles. Int. J. Perform. Anal. Sport 2021, 21, 519–531. [Google Scholar] [CrossRef]
- Rabello, L.M.; Macedo, C.d.S.G.; Gil, A.W.; Oliveira, M.R.d.; Coelho, V.A.; Silva, G.B.; Silva, R.A.D., Jr. Comparison of postural balance between professional tae kwon do athletes and young adults. Fisioter. Pesqui. 2014, 21, 139–143. [Google Scholar] [CrossRef]
- Açikgöz, Y.; Cengizel, E. The Relationship between Plantar Pressure Distribution and Balance in Adolescent Taekwondo Athletes. J. Gazi Beden Eğitimi Spor Bilim. Derg. 2023, 28, 160–166. [Google Scholar] [CrossRef]
- Moreira, P.; Paula, L. Kinesiologic Description of the Round House Kick: A Brief Review. J. Athl. Enhanc. 2017, 6, 2. [Google Scholar]
- Estevan, I.; Falco, C.; Silvernail, J.F.; Jandacka, D. Comparison of lower limb segments kinematics in a Taekwondo kick. An approach to the proximal to distal motion. J. Hum. Kinet. 2015, 47, 41. [Google Scholar] [CrossRef]
- Kashefi, T.; Daneshjoo, A.; Mousavi Sadati, S.K. The Effect of a Course of Up-cholugi and Yup-chagi Exercises on the Kinematic Indices of the Knee and the Incidence of Bow-leggedness (Genu Varum) in Professional Taekwondo Practitioners. J. Sport Biomech. 2021, 6, 214–225. [Google Scholar] [CrossRef]
- Melekoglu, T.; Isin, A. The Relationship between Football Participation Level and Lower Leg Alignment in Youth Males: Genu Varum. J. Educ. Train. Stud. 2019, 7, 137–141. [Google Scholar] [CrossRef]
- Silvernail, J.F.; Milner, C.E.; Thompson, D.; Zhang, S.; Zhao, X. The influence of body mass index and velocity on knee biomechanics during walking. Gait Posture 2013, 37, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Jeong, G.; Chun, B. Differences in Sports Injury Types According to Taekwondo Athlete Types (Sparring, Poomsae, and Demonstration). J. Sports Sci. Med. 2022, 21, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Adi, N.H. Analisis Gerakan Tendangan Ap Chagi Pada Taekwondoin junior Putra Kabupaten lombok Timur. J. Phys. Educ. Health Sport 2016, 3, 73–82. [Google Scholar]
- Han, M.-O.; Lee, N.-K.; Jun, H.-P. Injury incidence and its characteristics in Korean youth and collegiate Taekwondo sparring athletes: A retrospective study. Int. J. Environ. Res. Public Health 2023, 20, 5528. [Google Scholar] [CrossRef] [PubMed]
- Söderman, K.; Alfredson, H.; Pietilä, T.; Werner, S. Risk factors for leg injuries in female soccer players: A prospective investigation during one out-door season. Knee Surg. Sports Traumatol. Arthrosc. 2001, 9, 313–321. [Google Scholar] [CrossRef]
- Zarei, M.; Johari, K.; Bagherian, R. Lower extremity risk factors in Iranian adolescent taekwondo players. J. Phys. Treat.-Specif. Phys. Ther. 2020, 10, 7–14. [Google Scholar] [CrossRef]
- Huang, T.-Y.; Tang, W.-T.; Liu, T.-T.; Hamill, J.; Hu, C. Kinematic and kinetic demands on better roundhouse kick performances. Sports Biomech. 2022, 1–15. [Google Scholar] [CrossRef]
- Nguyen, A.-D.; Shultz, S.J. Sex differences in clinical measures of lower extremity alignment. J. Orthop. Sports Phys. Ther. 2007, 37, 389–398. [Google Scholar] [CrossRef]
- Jung, H.C.; Lee, S.; Seo, M.W.; Song, J.K. Isokinetic assessment of agonist and antagonist strength ratios in collegiate taekwondo athletes: A preliminary study. Sport Sci. Health 2017, 13, 175–181. [Google Scholar] [CrossRef]
- Kim, K.; Davaasambuu, B.; Wei, R.; Kim, Y.H. Biomechanical investigation of anterior cruciate ligament injury risk in pivoting leg during taekwondo kicks using motion analysis system. J. Mech. Sci. Technol. 2022, 36, 1051–1056. [Google Scholar] [CrossRef]
- Chang, W.-G.; Lin, K.-Y.; Chu, M.-Y.; Chow, T.-H. Differences in Pivot Leg Kinematics and Electromyography Activation in Various Round House Kicking Heights. J. Sports Sci. Med. 2021, 20, 457. [Google Scholar] [CrossRef] [PubMed]
- Clark, N.; Forshey, T.; Mulligan, I.; Kindel, C. Knee mechanics during a change of direction movement in division I athletes following full return to sport from anterior cruciate ligament reconstruction. Phys. Ther. Sport 2019, 35, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Naraghi, A.M.; White, L.M. Imaging of athletic injuries of knee ligaments and menisci: Sports imaging series. Radiology 2016, 281, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Isın, A.; Melekoğlu, T. Genu varum and football participation: Does football participation affect lower extremity alignment in adolescents? Knee 2020, 27, 1801–1810. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.-Y.; Seo, D.-K.; Cho, H.-K.; Lee, S.K. Effect of lower-extremity angular imbalance on foot and ankle pain in patients with genu varus deformity. J. Foot Ankle Surg. 2020, 59, 743–747. [Google Scholar] [CrossRef]
- Braga, U.M.; Mendonça, L.D.; Mascarenhas, R.O.; Alves, C.O.; Renato Filho, G.; Resende, R.A. Effects of medially wedged insoles on the biomechanics of the lower limbs of runners with excessive foot pronation and foot varus alignment. J. Gait Posture 2019, 74, 242–249. [Google Scholar] [CrossRef]
- Kobayashi, T.; Koshino, Y.; Miki, T. Abnormalities of foot and ankle alignment in individuals with chronic ankle instability: A systematic review. BMC Musculoskelet. Disord. 2021, 22, 683. [Google Scholar] [CrossRef]
- Dileep, K.; Krishna, H.; Rameez, M. Correlation of rearfoot angle to Q-angle in patellofemoral pain syndrome: A prospective study. Int. J. Res. Orthop. 2017, 3, 688–691. [Google Scholar] [CrossRef]
- Robb, K. Tibialis Anterior/Extensor Tendinopathy/Tenosynovitis. Clin. Pract. Guidel. 2018, 228. [Google Scholar]
- Gómez Carrión, Á.; de los Ángeles Atín Arratibel, M.; Morales Lozano, M.R.; Martínez Sebastián, C.; de la Cruz Torres, B.; Sánchez-Gómez, R. Kinematic Effect on the Navicular Bone with the Use of Rearfoot Varus Wedge. Sensors 2022, 22, 815. [Google Scholar] [CrossRef]
- Yoo, S.; Park, S.-K.; Yoon, S.; Lim, H.S.; Ryu, J. Comparison of proprioceptive training and muscular strength training to improve balance ability of taekwondo poomsae athletes: A randomized controlled trials. J. Sports Sci. Med. 2018, 17, 445. [Google Scholar] [PubMed]
- Seo, B.-D.; Kim, H.-J.; Ju, J.-Y. Effect of Muscle Fatigue on the Proprioception by the Taekwondo Training Type. Korean Soc. Phys. Med. 2020, 15, 1–9. [Google Scholar] [CrossRef]
- Page, P.; Frank, C.C.; Lardner, R. Assessment and Treatment of Muscle Imbalance: The Janda Approach; Human Kinetics: Champaign, IL, USA, 2010. [Google Scholar]
- Wąsik, J.; Ortenburger, D.; Góra, T.; Shan, G.; Mosler, D.; Wodarski, P.; Michnik, R.A. The influence of gender, dominant lower limb and type of target on the velocity of taekwon-do front kick. Acta Bioeng. Biomech. 2018, 20, 133–138. [Google Scholar]
- Lee, H.M.; Oh, S.; Kwon, J.W. Effect of plyometric versus ankle stability exercises on lower limb biomechanics in taekwondo demonstration athletes with functional ankle instability. J. Environ. Res. Public. Health 2020, 17, 3665. [Google Scholar] [CrossRef]
- McCann, R.; Kosik, K.; Terada, M.; Gribble, P. Residual impairments and activity limitations at return to play from a lateral ankle sprain. J. Athl. Ther. Train. 2018, 23, 83–88. [Google Scholar] [CrossRef]
- Torp, D.; Donovan, L. Chronic Foot and Ankle Injuries. In Foot and Ankle Biomechanics; Elsevier: Amsterdam, The Netherlands, 2023; pp. 507–525. [Google Scholar]
- Laurence, T. Ankle impingement syndromes. J. Clin. Pract. Guidel. 2018, 290, 957–971. [Google Scholar]
Variables | Sparring | Demonstration | Poomsae | ||||||
---|---|---|---|---|---|---|---|---|---|
Male | Female | Total | Male | Female | Total | Male | Female | Total | |
n (%) | 52 (82.5) | 11 (17.5) | 63 (100) | 43 (86.0) | 7 (14.0) | 50 (100) | 27 (61.4) | 17 (38.6) | 44 (100) |
Age (years) | 21.25 ± 1.23 | 21.45 ± 1.29 | 21.29 ± 1.24 | 21.37 ± 0.98 | 20.71 ± 0.95 | 21.24 ± 1.00 | 21.26 ± 0.94 | 21.59 ± 1.12 | 21.39 ± 1.02 |
Height (cm) | 179.91 ± 5.53 | 167.27 ± 5.96 | 177.7 ± 7.37 | 173.90 ± 5.43 | 161.13 ± 3.63 | 172.1 ± 6.85 | 172.87 ± 5.34 | 161.41 ± 4.78 | 168.44 ± 7.59 |
Weight (kg) | 73.45 ± 10.54 | 57.84 ± 8.97 | 70.72 ± 11.84 | 68.33 ± 6.88 | 55.09 ± 5.71 | 66.48 ± 8.13 | 68.57 ± 10.94 | 57.14 ± 8.14 | 64.15 ± 11.35 |
BMI (kg/m2) | 22.68 ± 2.96 | 20.59 ± 2.37 | 22.31 ± 2.96 | 22.58 ± 1.92 | 21.2 ± 1.71 | 22.38 ± 1.93 | 23.08 ± 4.18 | 21.88 ± 2.35 | 22.62 ± 3.60 |
Body fat (%) | 16.91 ± 6.72 | 24.25 ± 8.06 | 18.19 ± 7.45 | 16.25 ± 5.95 | 27.24 ± 5.32 | 17.79 ± 6.98 | 18.23 ± 7.60 | 30.49 ± 4.65 | 22.97 ± 8.90 |
Tool | Manufacturer | Variables |
---|---|---|
Application | Alignment, alpha version 1.0.2, Yonsei University, Seoul, Republic of Korea | Q-angle, genu recurvatum, tibiofemoral angle, rearfoot |
Goniometer | Baseline Evaluation Instruments, White Plains, NY, USA | Tibial torsion, rearfoot, and forefoot |
Bubble Inclinometer | Baseline Evaluation Instruments, White Plains, NY, USA | Hip anteversion |
Height gage | H4-20, Mitutoyo Mfg. Co., Ltd., Tokyo, Japan | Navicular drop test |
Palpation meter | Baseline Evaluation Instruments, White Plains, NY, USA | Pelvic tilt |
Variables | Position | ICC (2,1) |
---|---|---|
Hip anteversion | Prone | 0.97 |
Q-angle | Standing | 0.94 |
Supine | 0.87 | |
Tibiofemoral angle | Standing | 0.90 |
Supine | 0.96 | |
Genu recurvatum | Supine | 0.89 |
Tibial torsion | Prone | 0.90 |
Navicular drop test | Standing | 0.98 |
Rear foot | Standing | 0.85 |
Prone | 0.91 | |
Forefoot | Prone | 0.87 |
Pelvic tilt | Standing | 0.97 |
Variables | Group | Dominant Leg | Nondominant Leg | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean (SD) | F | p | Post Hoc | Mean (SD) | F | p | Post Hoc | ||
Hip anteversion | SG | 9.19 (4.19) | 0.64 | 0.53 | No Sig. | 9.08 (5.08) | 2.03 | 0.14 | No Sig. |
DG | 9.86 (4.46) | 8.32 (4.17) | |||||||
PG | 10.16 (5.18) | 10.27 (4.76) | |||||||
Q-angle (ST) | SG | 17.76 (6.86) | 1.92 | 0.15 | No Sig. | 17.29 (6.00) | 2.82 | 0.06 | No Sig. |
DG | 19.18 (7.28) | 16.90 (7.72) | |||||||
PG | 20.51 (7.54) | 20.08 (7.68) | |||||||
Q-angle (SU) | SG | 17.46 (6.20) | 2.62 | 0.08 | No Sig. | 15.99 (4.82) | 3.44 | 0.04 | DG < PG |
DG | 18.93 (6.00) | 14.82 (5.67) | |||||||
PG | 20.24 (6.53) | 17.89 (6.83) | |||||||
TFA (ST) | SG | 6.84 (3.12) | 4.38 | 0.01 | SG < PG | 6.14 (2.90) | 10.17 | 0.00 | SG < PG |
DG | 7.67 (2.51) | 7.37 (2.52) | |||||||
PG | 8.54 (3.08) | 8.68 (3.13) | |||||||
TFA (SU) | SG | 6.28 (2.59) | 5.89 | 0.00 | SG < PG | 5.67 (2.46) | 10.13 | 0.00 | SG, DG < PG |
DG | 6.80 (2.78) | 6.22 (2.71) | |||||||
PG | 8.12 (2.92) | 8.04 (3.13) | |||||||
GR | SG | 1.49 (3.44) | 2.60 | 0.08 | No Sig. | 0.37 (3.35) | 2.28 | 0.11 | No Sig. |
DG | 1.59 (3.63) | 0.43 (3.42) | |||||||
PG | −0.07 (4.94) | −1.01 (4.49) | |||||||
ND | SG | 0.73 (0.36) | 0.10 | 0.90 | No Sig. | 0.75 (0.47) | 2.58 | 0.08 | No Sig. |
DG | 0.70 (0.38) | 0.66 (0.40) | |||||||
PG | 0.76 (0.94) | 0.56 (0.35) | |||||||
Rearfoot (ST) | SG | 1.72 (2.57) | 5.62 | 0.00 | DG < SG | 1.72 (2.77) | 6.60 | 0.00 | DG < SG |
DG | −0.05 (3.43) | −0.16 (2.97) | |||||||
PG | 0.96 (2.21) | 0.77 (2.42) | |||||||
Rearfoot (PR) | SG | 4.33 (3.15) | 3.15 | 0.05 | No Sig. | 4.14 (2.85) | 2.33 | 0.10 | No Sig. |
DG | 3.19 (2.67) | 3.07 (4.57) | |||||||
PG | 3.18 (2.36) | 8.50 (4.07) | |||||||
Forefoot | SG | 10.94 (4.77) | 0.41 | 0.66 | No Sig. | 10.28 (4.68) | 5.72 | 0.00 | PG < DG |
DG | 11.36 (5.01) | 11.63 (4.57) | |||||||
PG | 10.47 (4.33) | 8.50 (4.07) | |||||||
Pelvic tilt | SG | 7.20 (3.03) | 1.13 | 0.33 | No Sig. | 6.93 (3.03) | 0.22 | 0.80 | No Sig. |
DG | 7.83 (4.14) | 7.38 (4.58) | |||||||
PG | 6.77 (3.10) | 7.02 (3.26) | |||||||
Tibia torsion | SG | 19.16 (7.40) | 1.41 | 0.25 | No Sig. | 17.90 (6.90) | 0.79 | 0.45 | No Sig. |
DG | 20.46 (7.21) | 16.56 (6.47) | |||||||
PG | 17.95 (6.92) | 16.29 (8.39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.-o.; Chang, E.-w.; Jun, H.-p. Comparison of Lower Extremity Alignment among Taekwondo Athletes of Various Subdisciplines. Medicina 2024, 60, 493. https://doi.org/10.3390/medicina60030493
Han M-o, Chang E-w, Jun H-p. Comparison of Lower Extremity Alignment among Taekwondo Athletes of Various Subdisciplines. Medicina. 2024; 60(3):493. https://doi.org/10.3390/medicina60030493
Chicago/Turabian StyleHan, Mi-ock, Eun-wook Chang, and Hyung-pil Jun. 2024. "Comparison of Lower Extremity Alignment among Taekwondo Athletes of Various Subdisciplines" Medicina 60, no. 3: 493. https://doi.org/10.3390/medicina60030493
APA StyleHan, M.-o., Chang, E.-w., & Jun, H.-p. (2024). Comparison of Lower Extremity Alignment among Taekwondo Athletes of Various Subdisciplines. Medicina, 60(3), 493. https://doi.org/10.3390/medicina60030493