Predictors of Mortality in Early Neonatal Sepsis: A Single-Center Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Variables Measured in the Study
2.3. Statistical Data Analysis
3. Results
3.1. Characteristics of Pregnant Women
3.2. Characteristics of Newborns
3.3. Risk Factors for Fatal Outcome in Early Neonatal Sepsis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shane, A.L.; Sánchez, P.J.; Stoll, B.J. Neonatal sepsis. Lancet 2017, 390, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Davies, H.D. Early-onset neonatal sepsis. Clin. Microbiol. Rev. 2014, 27, 21–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adair, C.E.; Kowalsky, L.; Quon, H.; Ma, D.; Stoffman, J.; McGeer, A.; Robertson, S.; Mucenski, M.; Davies, H.D. Risk factors for early-onset group B streptococcal disease in neonates: A population-based case-control study. CMAJ 2003, 169, 198–203. [Google Scholar] [PubMed]
- Møller, M.; Thomsen, A.C.; Borch, K.; Dinesen, K.; Zdravkovic, M. Rupture of fetal membranes and premature delivery associated with group B streptococci in urine of pregnant women. Lancet 1984, 2, 69–70. [Google Scholar] [CrossRef]
- Faxelius, G.; Bremme, K.; Kvist-Christensen, K.; Christensen, P.; Ringertz, S. Neonatal septicemia due to group B streptococci--perinatal risk factors and outcome of subsequent pregnancies. J. Perinat. Med. 1988, 16, 423–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbst, A.; Källén, K. Time between membrane rupture and delivery and septicemia in term neonates. Obstet. Gynecol. 2007, 110, 612–618. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Sánchez, P.J.; Faix, R.G.; Poindexter, B.B.; Van Meurs, K.P.; Bizzarro, M.J.; Goldberg, R.N.; Frantz, I.D., III; Hale, E.C.; et al. Early onset neonatal sepsis: The burden of group B Streptococcal and E. coli disease continues. Pediatrics 2011, 127, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Schelonka, R.L.; Chai, M.K.; Yoder, B.A.; Hensley, D.; Brockett, R.M.; Ascher, D.P. Volume of blood required to detect common neonatal pathogens. J. Pediatr. 1996, 129, 275–278. [Google Scholar] [CrossRef]
- Nizet, V.; Klein, J.O. Bacterial sepsis and meningitis. In Infectious Diseases of the Fetus and Newborn Infant, 7th ed.; Remington, J.S., Klein, J.O., Wilson, C.B., Nizet, V., Maldonado, Y.A., Eds.; Elsevier: Philadelphia, PA, USA, 2011; pp. 222–275. [Google Scholar]
- Kuppala, V.S.; Meinzen-Derr, J.; Morrow, A.L.; Schibler, K.R. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants. J. Pediatr. 2011, 159, 720–725. [Google Scholar] [CrossRef] [Green Version]
- Weese-Mayer, D.E.; Fondriest, D.W.; Brouillette, R.T.; Shulman, S.T. Risk factors associated with candidemia in the neonatal intensive care unit: A case-control study. Pediatr. Infect. Dis. J. 1987, 6, 190–196. [Google Scholar] [CrossRef]
- Saiman, L.; Ludington, E.; Pfaller, M.; Rangel-Frausto, S.; Wiblin, R.; Dawson, J.; Blumberg, H.M.; Patterson, J.E.; Rinaldi, M.; Edwards, J.E.; et al. Risk factors for candidemia in Neonatal Intensive Care Unit patients. The National Epidemiology of Mycosis Survey study group. Pediatr. Infect. Dis. J. 2000, 19, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Piantino, J.H.; Schreiber, M.D.; Alexander, K.; Hageman, J. Culture Negative Sepsis and Systemic Inflammatory Response Syndrome in Neonates. Neuroreviews 2013, 14, e294–e305. [Google Scholar] [CrossRef]
- Weirich, E.; Rabin, R.L.; Maldonado, Y.; Benitz, W.; Modler, S.; Herzenberg, L.A. Neutrophil CD11b expression as a diagnostic marker for early-onset neonatal infection. J. Pediatr. 1998, 132, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Li, L.; Dou, Y.; Li, P.; Chen, R.; Liu, H. Diagnostic utility of neutrophil CD64 as a marker for early-onset sepsis in preterm neonates. PLoS ONE 2014, 9, e102647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genel, F.; Atlihan, F.; Gulez, N.; Kazanci, E.; Vergin, C.; Terek, D.T.; Yurdun, O.C. Evaluation of adhesion molecules CD64, CD11b and CD62L in neutrophils and monocytes of peripheral blood for early diagnosis of neonatal infection. World J. Pediatr. 2012, 8, 72–75. [Google Scholar] [CrossRef]
- Küster, H.; Weiss, M.; Willeitner, A.E.; Detlefsen, S.; Jeremias, I.; Zbojan, J.; Geiger, R.; Lipowsky, G.; Simbruner, G. Interleukin-1 receptor antagonist and interleukin-6 for early diagnosis of neonatal sepsis 2 days before clinical manifestation. Lancet 1998, 352, 1271–1277. [Google Scholar] [CrossRef]
- Hornik, C.P.; Benjamin, D.K.; Becker, K.C.; Li, J.; Clark, R.; Cohen-Wolkowiez, M.; Smith, P.B. Use of the complete blood cell count in early-onset neonatal sepsis. Pediatr. Infect. Dis. J. 2012, 31, 799–802. [Google Scholar] [CrossRef] [Green Version]
- Chitra, W.; Lubis, B.M.; Siregar, O.R.; Hasibuan, B.S.; Lubis, I.N.D.; Nafianti, S. Role of Modified Hematologic Scoring System and Platelet Indices in Diagnosing Neonatal Sepsis. Perinatology 2022, 23, 22–28. [Google Scholar]
- Li, T.; Li, X.; Wei, Y.; Dong, G.; Yang, J.; Yang, J.; Fang, P.; Qi, M. Predictive Value of C-Reactive Protein-to-Albumin Ratio for Neonatal Sepsis. J. Inflamm. Res. 2021, 14, 3207–3215. [Google Scholar] [CrossRef]
- Li, T.; Qi, M.; Dong, G.; Li, X.; Xu, Z.; Wei, Y.; Feng, Y.; Ren, C.; Wang, Y.; Yang, J. Clinical Value of Prognostic Nutritional Index in Prediction of the Presence and Severity of Neonatal Sepsis. J. Inflamm. Res. 2021, 14, 7181–7190. [Google Scholar] [CrossRef]
- Weiss, S.L.; Peters, M.J.; Alhazzani, W.; Agus, M.S.D.; Flori, H.R.; Inwald, D.P.; Nadel, S.; Schlapbach, L.J.; Tasker, R.C.; Argent, A.C.; et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr. Crit. Care Med. 2020, 21, e52–e106. [Google Scholar] [CrossRef] [PubMed]
- Menon, K.; Schlapbach, L.J.; Akech, S.; Argent, A.; Biban, P.; Carrol, E.D.; Chiotos, K.; Chisti, M.J.; Evans, I.V.R.; Inwald, D.P.; et al. Pediatric Sepsis Definition Taskforce of the Society of Critical Care Medicine. Criteria for Pediatric Sepsis-A Systematic Review and Meta-Analysis by the Pediatric Sepsis Definition Taskforce. Crit. Care Med. 2022, 50, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Gan, M.Y.; Lee, W.L.; Yap, B.J.; Seethor, S.T.; Greenberg, R.G.; Pek, J.H.; Tan, B.; Hornik, C.P.; Lee, J.H.; Chong, S.L. Contemporary Trends in Global Mortality of Sepsis Among Young Infants Less Than 90 Days: A Systematic Review and Meta-Analysis. Front. Pediatr. 2022, 10, 890767. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Kotadia, N.; English, L.; Kissoon, N.; Ansermino, J.M.; Kabakyenga, J.; Lavoie, P.M.; Wiens, M.O. Predictors of Mortality in Neonates and Infants Hospitalized With Sepsis or Serious Infections in Developing Countries: A Systematic Review. Front. Pediatr. 2018, 6, 277. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.K.; Bhat, B.V. Distinct mechanisms of the newborn innate immunity. Immunol. Lett. 2016, 173, 42–54. [Google Scholar] [CrossRef]
- Kolesnichenko, S.I.; Kadyrova, I.A.; Lavrinenko, A.V.; Zhumadilova, Z.A.; Avdienko, O.V.; Vinogradskaya, Y.V.; Fominykh, Y.A.; Panibratec, L.G.; Akhmaltdinova, L.L. Mortality Risk Factors of Early Neonatal Sepsis During COVID-19 Pandemic. Infect. Drug Resist. 2022, 15, 6307–6316. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.; Fanaroff, A.A.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Lemons, J.A.; Donovan, E.F.; Stark, A.R.; Tyson, J.E.; et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N. Engl. J. Med. 2002, 347, 240–247. [Google Scholar] [CrossRef]
- Goh, G.L.; Lim, C.S.E.; Sultana, R.; De La Puerta, R.; Rajadurai, V.S.; Yeo, K.T. Risk Factors for Mortality From Late-Onset Sepsis Among Preterm Very-Low-Birthweight Infants: A Single-Center Cohort Study From Singapore. Front. Pediatr. 2022, 9, 801955. [Google Scholar] [CrossRef]
- Wynn, J.L.; Kelly, M.S.; Benjamin, D.K.; Clark, R.H.; Greenberg, R.; Benjamin, D.K., Jr.; Smith, P.B. Timing of Multiorgan Dysfunction among Hospitalized Infants with Fatal Fulminant Sepsis. Am. J. Perinatol. 2017, 34, 633–639. [Google Scholar] [CrossRef]
- Wynn, J.L.; Polin, R.A. A neonatal sequential organ failure assessment score predicts mortality to late-onset sepsis in preterm very low birth weight infants. Pediatr. Res. 2020, 88, 85–90. [Google Scholar] [CrossRef]
- Spinella, P.C.; Tucci, M.; Fergusson, D.A.; Lacroix, J.; Hébert, P.C.; Leteurtre, S.; Schechtman, K.B.; Doctor, A.; Berg, R.A.; Bockelmann, T.; et al. Effect of Fresh vs Standard-issue Red Blood Cell Transfusions on Multiple Organ Dysfunction Syndrome in Critically Ill Pediatric Patients: A Randomized Clinical Trial. JAMA 2019, 322, 2179–2190. [Google Scholar] [CrossRef]
- Crawford, T.M.; Andersen, C.C.; Hodyl, N.A.; Robertson, S.A.; Stark, M.J. The contribution of red blood cell transfusion to neonatal morbidity and mortality. J. Paediatr. Child Health 2019, 55, 387–392. [Google Scholar] [CrossRef]
- dos Santos, A.M.; Guinsburg, R.; de Almeida, M.F.; Procianoy, R.S.; Marba, S.T.; Ferri, W.A.; Rugolo, L.M.; Lopes, J.M.; Moreira, M.E.; Luz, J.H.; et al. Factors associated with red blood cell transfusions in very-low-birth-weight preterm infants in Brazilian neonatal units. BMC Pediatr. 2015, 15, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, N. Red blood cell transfusion in infants and children—Current perspectives. Pediatr. Neonatol. 2018, 59, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thatrimontrichai, A.; Premprat, N.; Janjindamai, W.; Dissaneevate, S.; Maneenil, G. Risk Factors for 30-Day Mortality in Neonatal Gram-Negative Bacilli Sepsis. Am. J. Perinatol. 2020, 37, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Peters, L.; Olson, L.; Khu, D.T.K.; Linnros, S.; Le, N.K.; Hanberger, H.; Hoang, N.T.B.; Tran, D.M.; Larsson, M. Multiple antibiotic resistance as a risk factor for mortality and prolonged hospital stay: A cohort study among neonatal intensive care patients with hospital-acquired infections caused by gram-negative bacteria in Vietnam. PLoS ONE 2019, 14, e0215666. [Google Scholar] [CrossRef] [PubMed]
- Thatrimontrichai, A.; Tonjit, P.; Janjindamai, W.; Dissaneevate, S.; Maneenil, G.; Phatigomet, M. Risk Factors Associated With 30-Day Mortality Among Neonates With A. baumannii Sepsis. Pediatr. Infect. Dis. J. 2021, 40, 1111–1114. [Google Scholar] [CrossRef]
- Wen, S.C.H.; Ezure, Y.; Rolley, L.; Spurling, G.; Lau, C.L.; Riaz, S.; Paterson, D.L.; Irwin, A.D. Gram-negative neonatal sepsis in low- and lower-middle-income countries and WHO empirical antibiotic recommendations: A systematic review and meta-analysis. PLoS Med. 2021, 18, e1003787. [Google Scholar] [CrossRef]
Variable | Mean ± Standard Deviation (Range) or Number (%) |
---|---|
Conception | |
Natural | 114 (85.7%) |
Assisted reproduction | 19 (14.3%) |
Number of fetuses | |
Singleton pregnancy | 96 (72.2%) |
Multiple pregnancy | 37 (27.8%) |
Number of previous births: 0/1/2/3/4/5 | 59 (42.7%)/51 (38.3%)/13 (9.8%)/5 (3.8%)/4 (3.0%)/1 (0.7%) |
History of miscarriages | 27 (20.3%) |
Threatened premature labor | 36 (27.1%) |
Premature rupture of membranes | 33 (24.8%) |
Amniotic fluid pathology | 26 (19.5%) |
Acute and chronic diseases | |
Urogenital infection/chorioamnionitis | 39 (28.3%) |
Hypertension | 24 (18.0%) |
Diabetes mellitus | 5 (3.8%) |
Any smoking during pregnancy | 12 (9.0%) |
Variable | Cases (n = 51) Mean ± Standard Deviation (Range) or Number (%) | Controls (n = 85) Mean ± Standard Deviation (Range) or Number (%) | Test Value and p Value |
---|---|---|---|
Gender | |||
Female | 23 (45.1%) | 34 (40.0%) | χ2 = 0.163, p = 0.686 |
Male | 28 (54.9%) | 51 (60.0%) | |
Birth weight (g) | 882.8 ± 372.2 (400–2850) | 1660.9 ± 721.1 (650–3600) | U = 507.500, p = 0.000 * |
Time of delivery 1 | |||
Extremely preterm | 38 (74.5%) | 19 (22.4%) | χ2 = 43.368, p = 0.000 * |
Very preterm | 12 (23.5%) | 26 (30.6%) | |
Moderate preterm | 0 (0%) | 15 (17.6%) | |
Late preterm | 0 (0%) | 18 (21.2%) | |
Early term | 1 (2%) | 5 (5.9%) | |
Full term | 0 (0%) | 2 (2.4%) | |
Delivery method | |||
Vaginal | 27 (53%) | 38 (44.7%) | χ2 = 1.993, p = 0.369 |
Caesarean section | 24 (47.1%) | 47 (55.3%) | |
Developmental level 2 | |||
SGA | 7 (13.7%) | 12 (14.1%) | χ2 = 0.867, p = 0.285 |
AGA | 43 (84.3%) | 70 (82.4%) | |
LGA | 1 (2.0%) | 3 (3.5%) | |
Ponderal index | 2.2 ± 0.4 (1.2–3.3) | 2.2 ± 0.3 (1.3–3.0) | U = 2109.500, p = 0.794 |
Apgar score at first minute | |||
8–10 | 1 (2.0%) | 21 (24.7%) | χ2 = 24.288, p = 0.000 * |
4–7 | 16 (31.4%) | 41 (48.2%) | |
0–3 | 34 (66.7%) | 23 (27.1%) | |
ABO blood group type | |||
A | 23 (46.0%) | 34 (40.0%) | χ2 = 1.383, p = 0.710 |
B | 8 (16.0%) | 11 (12.9%) | |
AB | 4 (8.0%) | 6 (7.1%) | |
O | 15 (30.0%) | 34 (40.0%) | |
Rh blood group type | |||
Rh− | 8 (15.7%) | 11 (12.9%) | χ2 = 0.042, p = 0.622 |
Rh+ | 43 (84.3%) | 74 (87.1%) |
Variable | Cases (n = 51) Mean ± Standard Deviation (Range) or Number (%) | Controls (n = 85) Mean ± Standard Deviation (Range) or Number (%) | Test Value and p Value |
---|---|---|---|
Cause of sepsis | |||
Gram-negative bacteria 1 | 47 (92.5%) | 45 (52.9%) | χ2 = 20.642, p = 0.000 * |
Gram-positive bacteria 2 | 4 (7.8%) | 40 (47.1%) | |
Average value of blood pH on the 1st day | 7.26 ± 0.11 (6.86–7.48) | 7.32 ± 0.08 (7.07–7.46) | U = 1407.500, p = 0.001 * |
Average value of base excess on the 1st day (mmol/L) | −6.35 ± 3.78 (−21.2–2.67) | −4.64 ± 2.73 (−12.0–1.57) | U = 1494.500, p = 0.002 * |
Body temperature on admission (°C) | 35.52 ± 0.80 (32.90–36.90) | 36.15 ± 0.54 (34.70–37.30) | U = 1035.500, p = 0.000 * |
Average value of FiO2 3 during the 1st day | 49.7 ± 15.6 (27.0–100.0) | 44.6 ± 13.8 (21.0–85.0) | U = 1745.500, p = 0.058 |
Average value of systolic blood pressure on the 1st day (mmHg) | 51.84 ± 10.87 (26.00–83.00) | 59.06 ± 11.71 (42.00–92.00) | U = 1335.000, p = 0.000 * |
Average value of diastolic blood pressure on the 1st day (mmHg) | 25.61 ± 9.46 (8.00–59.00) | 31.24 ± 8.68 (16.00–60.00) | U = 1278.500, p = 0.000 * |
Average value of mean blood pressure on the 1st day (mmHg) | 36.87 ± 9.65 (15.00–65.00) | 43.80 ± 9.91 (27.00–81.00) | U = 1222.500, p = 0.000 * |
Leukocytes on the 1st day (×109/L) | 19.36 ± 10.96 (4.30–68.90) | 20.42 ± 13.56 (3.60–94.60) | U = 2107.500, p = 0.787 |
Thrombocytes on the 1st day (×109/L) | 181.78 ± 59.74 (49.00–310.00) | 209.05 ± 61.45 (88.00–348.00) | U = 1694.500, p = 0.021 * |
Hemoglobin on the 1st day (g/L) | 169.86 ± 29.80 (88.00–221.00) | 182.33 ± 28.81 (86.00–250.00) | U = 1684.000, p = 0.030 * |
Albumin on the 1st day (g/L) | 25.82 ± 5.03 (12.00–42.00) | 30.51 ± 5.08 (19.00–42.00) | U = 1026.500, p = 0.000 * |
Urea on the 3rd day (mmol/L) | 9.73 ± 2.49 (5.20–16.80) | 6.43 ± 3.61 (1.20–18.9) | U = 668.500, p = 0.000 * |
Creatinin on the 3rd day (mmol/L) | 95.41 ± 25.91 (49.00–166.00) | 74.89 ± 21.63 (23.00–161.00) | U = 842.000, p = 0.000 * |
Bilirubin on the 2nd day (μmol/L) | 76.91 ± 28.29 (17.00–139.00) | 88.97 ± 34.51 (27.00–229.00) | U = 1764.000, p = 0.100 |
Convulsions during 1st week | |||
Yes | 33 (64.7%) | 18 (21.2%) | χ2 = 23.946, p = 0.000 * |
No | 18 (35.35) | 67 (78.8%) | |
Pneumothorax/Pneumomediastinum/Pulmonary interstitial emphysema | |||
Yes | 10 (19.6%) | 7 (8.2%) | χ2 = 3.132, p = 0.077 |
No | 41 (80.4%) | 78 (91.8%) |
Variable | Cases (n = 51) Mean ± Standard Deviation (Range) or Number (%) | Controls (n = 85) Mean ± Standard Deviation (Range) or Number (%) | Test Value and p Value |
---|---|---|---|
Resuscitation measures | |||
Yes | 40 (78.4%) | 47 (55.3%) | χ2 = 17.047, p = 0.001 * |
No | 11 (21.6%) | 38 (44.7%) | |
Ibuprofen for the treatment of ductus arteriousus | |||
Yes | 16 (31.4%) | 19 (22.4%) | χ2 = 0.926, p = 0.336 |
No | 35 (68.6%) | 66 (77.6%) | |
Surfactant | |||
Yes | 22 (43.1%) | 20 (23.5%) | χ2 = 4.859, p = 0.027 * |
No | 29 (56.9%) | 65 (76.5%) | |
Double-inotropic therapy | |||
Yes | 41 (80.4%) | 17 (20.0%) | χ2 = 45.093, p = 0.000 * |
No | 10 (19.6%) | 68 (80.0%) | |
Phototherapy | |||
Yes | 41 (80.4%) | 76 (89.4%) | χ2 = 1.405, p = 0.236 |
No | 10 (19.6%) | 9 (10.6%) | |
Initial antibiotic therapy | |||
Ampicillin + Gentamycin | 11 (21.6%) | 27 (31.8%) | χ2 = 2.091, p = 0.352 |
Ampicillin + Amikacin | 39 (76.5%) | 55 (64.7%) | |
Ampicillin + Meropenem | 1 (2.0%) | 3 (3.5%) | |
Protein intake during the 1st day (g/kg) | 0.5 ± 0.6 (0–3.3) | 0.4 ± 0.5 (0–2.0) | U = 1871.000, p = 0.160 |
Glucose intake during the 1st day (mg/kg/min) | 5.1 ± 1.3 (1.0–8.7) | 5.0 ± 1.2 (0.8–8.4) | U = 2148, p = 0.930 |
Fluid intake during the 1st day (mL/kg) | 99.0 ± 17.4 (58.0–156.0) | 85.7 ± 17.1 (13.0–139.0) | U = 1142.500, p = 0.000 * |
Erythrocyte transfusion during the 1st week | |||
Yes | 47 (92.2%) | 22 (25.9%) | χ2 = 53.394, p = 0.000 * |
No | 4 (7.8%) | 63 (74.1%) | |
Thrombocyte transfusion during the 1st week | |||
Yes | 29 (56.9%) | 10 (11.8%) | χ2 = 29.530, p = 0.000 * |
No | 22 (43.1%) | 75 (88.2%) | |
Plasma transfusion during the 1st week | |||
Yes | 40 (78.4%) | 33 (38.8%) | χ2 = 18.549, p = 0.000 * |
No | 11 (21.6%) | 52 (61.2%) |
Risk Factors | Univariate Model Crude OR with 95% CI p | Multivariate Model Adjusted # OR with 95% CI p |
---|---|---|
Birth weight | 0.996 (0.995–0.998) p = 0.000 * | 0.998 (0.996–1.000) p = 0.046 * |
Average value of blood pH on the 1st day | 0.001 (0.000–0.067) p = 0.001 * | 0.010 (0.000–3.334) p = 0.121 |
Body temperature on admission | 0.212 (0.107–0.421) p = 0.000 * | 0.641 (0.265–1.552) p = 0.324 |
Double-inotropic therapy | 16.400 (6.857–39.222) p = 0.000 * | 9.186 (2.451–34.432) p = 0.001 * |
Convulsions during 1st week | 6.824 (3.144–14.812) p = 0.000 * | 2.126 (0.621–7.283) p = 0.230 |
Erythrocyte transfusion during the 1st week | 33.648 (10.866–104.198) p = 0.000 * | 5.279 (1.147–24.290) p = 0.033 * |
Plasma transfusion during the 1st week | 5.730 (2.582–12.717) p = 0.000 * | 1.290 (0.320–5.198) p = 0.721 |
Blood culture | 10.444 (3.455–31.569) p = 0.000 * | 7.071 (1.147–43.584) p = 0.035 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovičić, M.; Milosavljević, M.N.; Folić, M.; Pavlović, R.; Janković, S.M. Predictors of Mortality in Early Neonatal Sepsis: A Single-Center Experience. Medicina 2023, 59, 604. https://doi.org/10.3390/medicina59030604
Jovičić M, Milosavljević MN, Folić M, Pavlović R, Janković SM. Predictors of Mortality in Early Neonatal Sepsis: A Single-Center Experience. Medicina. 2023; 59(3):604. https://doi.org/10.3390/medicina59030604
Chicago/Turabian StyleJovičić, Marija, Miloš N. Milosavljević, Marko Folić, Radiša Pavlović, and Slobodan M. Janković. 2023. "Predictors of Mortality in Early Neonatal Sepsis: A Single-Center Experience" Medicina 59, no. 3: 604. https://doi.org/10.3390/medicina59030604
APA StyleJovičić, M., Milosavljević, M. N., Folić, M., Pavlović, R., & Janković, S. M. (2023). Predictors of Mortality in Early Neonatal Sepsis: A Single-Center Experience. Medicina, 59(3), 604. https://doi.org/10.3390/medicina59030604