Effects of Alcohol Consumption on Oxidative Stress in a Sample of Patients Recruited in a Dietary Center in a Southern University Hospital: A Retrospective Study
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Federazione delle Società Italiane di Nutrizione in Collaborazione con Segretariato Sociale RAI. Roma. 2010. Available online: https://sinu.it/wp-content/uploads/2019/07/Glossario-FeSIN-Alimentazione-e-nutrizione-in-parole.pdf (accessed on 16 November 2021).
- Shield, K.D.; Parry, C.; Rehm, J. Chronic diseases and conditions related to alcohol use. Alcohol Res. 2013, 35, 155–173. [Google Scholar] [PubMed]
- Di Castelnuovo, A.; Costanzo, S.; Bagnardi, V.; Donati, M.B.; Iacoviello, L.; De Gaetano, G. Alcohol dosing and total mortality in men and women: An updated meta-analysis of 34 prospective studies. Arch. Intern. Med. 2006, 166, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Di Castelnuovo, A.; Rotondo, S.; Iacoviello, L.; Donati, M.B.; De Gaetano, G. Meta-analysis of wine and beer consumption in relation to vascular risk. Circulation 2002, 105, 2836–2844. [Google Scholar] [CrossRef] [PubMed]
- Marmot, M.; Brunner, E. Alcohol and cardiovascular disease: The status of the U shaped curve. BMJ 1991, 303, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, S.; Hammar, N.; Grill, V. Alcohol consumption and type 2 diabetes Meta-analysis of epidemiological studies indicates a U-shaped relationship. Diabetologia 2005, 48, 1051–1054. [Google Scholar] [CrossRef] [PubMed]
- Rehm, J.; Baliunas, D.; Borges, G.L.G.; Graham, K.; Irving, H.; Kehoe, T.; Parry, C.D.; Patra, J.; Popova, S.; Poznyak, V.; et al. The relation between different dimensions of alcohol consumption and burden of disease: An overview. Addiction 2010, 105, 817–843. [Google Scholar] [CrossRef]
- Beulens, J.W.J.; van der Schouw, Y.T.; Bergmann, M.M.; Rohrmann, S.; Schulze, M.B.; Buijsse, B.; Grobbee, D.E.; Arriola, L.; Cauchi, S.; Tormo, M.J.; et al. Alcohol consumption and risk of type 2 diabetes in European men and women: Influence of beverage type and body size The EPIC-InterAct study. J. Intern. Med. 2012, 272, 358–370. [Google Scholar] [CrossRef]
- Costanzo, S.; Di Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; De Gaetano, G. Cardiovascular and overall mortality risk in relation to alcohol consumption in patients with cardiovascular disease. Circulation 2010, 121, 1951–1959. [Google Scholar] [CrossRef]
- Costanzo, S.; Di Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Wine, beer or spirit drinking in relation to fatal and non-fatal cardiovascular events: A meta-analysis. Eur. J. Epidemiol. 2011, 26, 833–850. [Google Scholar] [CrossRef]
- Costanzo, S.; Mukamal, K.J.; Di Castelnuovo, A.; Bonaccio, M.; Olivieri, M.; Persichillo, M.; De Curtis, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; et al. Alcohol consumption and hospitalization burden in an adult Italian population: Prospective results from the Moli-sani study. Addiction 2019, 114, 636–650. [Google Scholar] [CrossRef]
- Levi, F.; Pasche, C.; Lucchini, F.; Ghidoni, R.; Ferraroni, M.; La Vecchia, C. Resveratrol and breast cancer risk. Eur. J. Cancer Prev. 2005, 14, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Tramacere, I.; Negri, E.; Bagnardi, V.; Garavello, W.; Rota, M.; Scotti, L.; Islami, F.; Corrao, G.; Boffetta, P.; La Vecchia, C. A meta-analysis of alcohol drinking and oral and pharyngeal cancers. Part 1: Overall results and dose-risk relation. Oral. Oncol. 2010, 46, 497–503. [Google Scholar] [CrossRef]
- Mostofsky, E.; Chahal, H.S.; Mukamal, K.J.; Rimm, E.B.; Mittleman, M.A. Alcohol and Immediate Risk of Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis. Circulation 2016, 133, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Engler, P.A.; Ramsey, S.E.; Smith, R.J. Alcohol use of diabetes patients: The need for assessment and intervention. Acta Diabetol. 2013, 50, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Theodoratou, E.; Timofeeva, M.; Li, X.; Meng, X.; Ioannidis, J.P. Nature, Nurture, and Cancer Risks: Genetic and Nutritional Contributions to Cancer. Annu. Rev. Nutr. 2017, 37, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Glass, L.; Mattson, S.N. Fetal Alcohol Spectrum Disorders: A Case Study. J. Pediatr. Neuropsychol. 2017, 3, 114–135. [Google Scholar] [CrossRef]
- DeBattista, C.; Eisendrath, S.J. Psychiatric disorders. In Current Medical Diagnosis & Treatment, 55th ed.; Papadakis, M.A., McPhee, S.J., Eds.; McGraw-Hill Education: New York, NY, USA, 2016; pp. 1074–1078. [Google Scholar]
- Schuckit, M.A. Alcohol-use disorders. Lancet 2009, 373, 492–501. [Google Scholar] [CrossRef]
- Varela-Rey, M.; Woodhoo, A.; Martinez-Chantar, M.L.; Mato, J.M.; Lu, S.C. Alcohol, DNA methylation, and cancer. Alcohol Res. 2013, 35, 25–35. [Google Scholar]
- La Fauci, V.; Squeri, R.; Spataro, P.; Genovese, C.; Laudani, N.; Alessi, V. Young people, young adults and binge drinking. J. Prev. Med. Hyg. 2019, 60, E376–E385. [Google Scholar]
- Foltran, F.; Gregori, D.; Franchin, L.; Verduci, E.; Giovannini, M. Effect of alcohol consumption in prenatal life, childhood, and adolescence on child development. Nutr. Rev. 2011, 69, 642–659. [Google Scholar] [CrossRef]
- National Institute of Aging (NHI). Available online: https://www.nia.nih.gov/health/facts-about-aging-and-alcohol#:~:text=Lead%20to%20some%20kinds%20of,memory%20loss%20and%20mood%20disorders (accessed on 16 November 2021).
- Liu, J.; Lewis, G.; Evans, L. Understanding aggressive behaviour across the lifespan. J. Psychiatr. Ment. Health Nurs. 2013, 20, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Metro, D.; Cernaro, V.; Santoro, D.; Papa, M.; Buemi, M.; Benvenga, S.; Manasseri, L. Beneficial effects of oral pure caffeine on oxidative stress. J. Clin. Transl. Endocrinol. 2017, 10, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Metro, D.; Muraca, U.; Manasseri, L. Role of green tea in oxidative stress prevention. Clin. Ter. 2006, 157, 507–510. [Google Scholar] [PubMed]
- Metro, D.; Cernaro, V.; Papa, M.; Benvenga, S. Marked improvement of thyroid function and autoimmunity by Aloe barbadensis miller juice in patients with subclinical hypothyroidism. J. Clin. Transl. Endocrinol. 2018, 11, 18–25. [Google Scholar] [CrossRef]
- Visioli, F.; Grande, S.; Bogani, P.; Galli, C. The role of antioxidants in the mediterranean diets: Focus on cancer. Eur. J. Cancer Prev. 2004, 13, 337–343. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Dugo, G.; Ruberto, G.; Leto, C.; Napoli, E.M.; Cicero, N.; Gervasi, T.; Virga, G.; Leone, R.; Licata, M.; et al. Study of quantitative and qualitative variations in essential oils of Sicilian Rosmarinus officinalis L. Nat. Prod. Res. 2015, 29, 1928–1934. [Google Scholar] [CrossRef]
- Cacciola, F.; Beccaria, M.; Oteri, M.; Utczas, M.; Giuffrida, D.; Cicero, N.; Dugo, G.; Dugo, P.; Mondello, L. Chemical characterisation of old cabbage (Brassica oleracea L. var. acephala) seed oil by liquid chromatography and different spectroscopic detection systems. Nat. Prod. Res. 2016, 30, 1646–1654. [Google Scholar]
- Gervasi, T.; Oliveri, F.; Gottuso, V.; Squadrito, M.; Bartolomeo, G.; Cicero, N.; Dugo, G. Nero d’Avola and Perricone cultivars: Determination of polyphenols, flavonoids and anthocyanins in grapes and wines. Nat. Prod. Res. 2016, 30, 2329–2337. [Google Scholar] [CrossRef]
- Alesci, A.; Salvo, A.; Lauriano, E.R.; Gervasi, T.; Palombieri, D.; Bruno, M.; Pergolizzi, S.; Cicero, N. Production and extraction of astaxanthin from Phaffia rhodozyma and its biological effect on alcohol-induced renal hypoxia in Carassius auratus. Nat. Prod. Res. 2015, 29, 1122–1126. [Google Scholar] [CrossRef]
- Corsaro, C.; Cicero, N.; Mallamace, D.; Vasi, S.; Naccari, C.; Salvo, A.; Giofrè, S.; Dugo, G. HR-MAS and NMR towards Foodomics. J. Food Res. Int. 2016, 89, 1085–1094. [Google Scholar] [CrossRef]
- Corsaro, C.; Mallamace, D.; Vasi, S.; Ferrantelli, V.; Dugo, G.; Cicero, N. H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet. J. Anal. Methods Chem. 2015, 2015, 175696. [Google Scholar] [CrossRef] [PubMed]
- Benameur, Q.; Gervasi, T.; Pellizzeri, V.; Pľuchtová, M.; Tali-Maama, H.; Assaous, F.; Guettou, B.; Rahal, K.; Gruľová, D.; Dugo, G.; et al. Antibacterial activity of Thymus vulgaris essential oil alone and in combination with cefotaxime against blaESBL producing multidrug resistant Enterobacteriaceae isolates. Nat. Prod. Res. 2019, 33, 2647–2654. [Google Scholar] [CrossRef] [PubMed]
- Metro, D.; Tardugno, R.; Papa, M.; Bisignano, C.; Manasseri, L.; Calabrese, G.; Gervasi, T.; Dugo, G.; Cicero, N. Adherence to the Mediterranean diet in a Sicilian student population. Nat. Prod. Res. 2018, 32, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Metro, D.; Papa, M.; Manasseri, L.; Gervasi, G.; Campone, L.; Pellizzeri, V.; Tardugno, R.; Dugo, G. Mediterranean diet in a Sicilian student population. Second part: Breakfast and its nutritional profile. Nat. Prod. Res. 2020, 34, 2255–2261. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef]
- Calabrese, V.; Cornelius, C.; Leso, V.; Trovato-Salinaro, A.; Ventimiglia, B.; Cavallaro, M.; Scuto, M.; Rizza, S.; Zanoli, L.; Neri, S.; et al. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim. Biophys. Acta 2012, 1822, 729–736. [Google Scholar] [CrossRef]
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef]
- Ruggeri, P.; Metro, D.; Fedele, N.; Manasseri, L. Effects of Ethanol acute administration on the lipid peroxidation and on the antioxidant systems in rat brain areas. Ital. J. Bioc. 1997, 46, 184–188. [Google Scholar]
- Lauterburg, B.H.; Velez, M.E. Glutathione deficiency in alcoholics: Risk factor for paracetamol hepatotoxicity. Gut 1988, 29, 1153–1157. [Google Scholar] [CrossRef]
- Mišík, M.; Hoelzl, C.; Wagner, K.-H.; Cavin, C.; Moser, B.; Kundi, M.; Simic, T.; Elbling, L.; Kager, N.; Ferk, F.; et al. Impact of paper filtered coffee on oxidative DNA-damage: Results of a clinical trial. Mutat. Res. 2010, 692, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Pan, J.H.; Kim, S.H.; Lee, J.H.; Park, J.W. Chlorogenic acid ameliorates alcohol-induced liver injuries through scavenging reactive oxygen species. Biochimie 2018, 150, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Takasaki, W.; Yamoto, T.; Manabe, S.; Sato, I.; Tsuda, S. Effect of glutathione (GSH) depletion on DNA damage and blood chemistry in aged and young rats. J. Toxicol. Sci. 2008, 33, 421–429. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rebrin, I.; Sohal, R.S. Pro-oxidant shift in glutathione redox state during aging. Adv. Drug Deliv. Rev. 2008, 60, 1545–1552. [Google Scholar] [CrossRef]
- Dinçer, Y.; Akçay, T.; Alademir, Z.; Ilkova, H. Assessment of DNA base oxidation and glutathione level in patients with type 2 diabetes. Mutat. Res. 2002, 505, 75–81. [Google Scholar] [CrossRef]
- Dincer, Y.; Akcay, T.; Alademir, Z.; Ilkova, H. Effect of oxidative stress on glutathione pathway in red blood cells from patients with insulin-dependent diabetes mellitus. Metabolism 2002, 51, 1360–1362. [Google Scholar] [CrossRef]
- Margutti, P.; Matarrese, P.; Conti, F.; Colasanti, T.; Delunardo, F.; Capozzi, A.; Garofalo, T.; Profumo, E.; Riganò, R.; Siracusano, A.; et al. Autoantibodies to the C-terminal subunit of RLIP76 induce oxidative stress and endothelial cell apoptosis in immune-mediated vascular diseases and atherosclerosis. Blood 2008, 111, 4559–4570. [Google Scholar] [CrossRef]
- Seven, A.; Güzel, S.; Aslan, M.; Hamuryudan, V. Lipid, protein, DNA oxidation and antioxidant status in rheumatoid arthritis. Clin. Biochem. 2008, 41, 538–543. [Google Scholar] [CrossRef]
- Resende, R.; Moreira, P.I.; Proença, T.; Deshpande, A.; Busciglio, J.; Pereira, C.; Oliveira, C.R. Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic. Biol. Med. 2008, 44, 2051–2057. [Google Scholar] [CrossRef]
- Lang, A.E. The progression of Parkinson disease: A hypothesis. Neurology 2007, 68, 948–952. [Google Scholar] [CrossRef]
- Cornelli, U.; Cornelli, M.; Terranova, R.; Luca, S.; Belcaro, G. Importanza dello stress ossidativo come fattore di rischio per la morbilità. Med. Biol. 2000, 1, 13–18. [Google Scholar]
- Mukhopadhyay, P.; Eid, N.; Abdelmegeed, M.A.; Sen, A. Interplay of Oxidative Stress, Inflammation, and Autophagy: Their Role in Tissue Injury of the Heart, Liver, and Kidney. Oxid. Med. Cell Longev. 2018, 2018, 2090813. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, N.A.; Vale, G.T.D.; Parente, J.M.; Yokota, R.; De Martinis, B.S.; Casarini, D.E.; Castro, M.M.; Tirapelli, C.R. Ethanol withdrawal increases blood pressure and vascular oxidative stress: A role for angiotensin type 1 receptors. J. Am. Soc. Hypertens. 2018, 12, 561–573. [Google Scholar] [CrossRef]
- Vale, G.T.D.; Simplicio, J.A.; Gonzaga, N.A.; Yokota, R.; Ribeiro, A.A.; Casarini, D.; De Martinis, B.; Tirapelli, C.R. Nebivolol prevents vascular oxidative stress and hypertension in rats chronically treated with ethanol. Atherosclerosis 2018, 274, 67–76. [Google Scholar] [CrossRef]
- Hopps, E.; Noto, D.; Caimi, G.; Averna, M.R. A novel component of the metabolic syndrome: The oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 72–77. [Google Scholar] [CrossRef]
- Moussa, S.A. Oxidative stress in diabetes mellitus. Rom. J. Biophys. 2008, 18, 225–236. [Google Scholar]
- Bandeira, S.d.M.; Guedes, G.d.S.; da Fonseca, L.J.; Pires, A.S.; Gelain, D.P.; Moreira, J.C.F.; Rabelo, L.A.; Vasconcelos, S.M.L.; Goulart, M.O.F. Characterization of blood oxidative stress in type 2 diabetes mellitus patients: Increase in lipid peroxidation and SOD activity. Oxid. Med. Cell Longev. 2012, 2012, 819310. [Google Scholar] [CrossRef]
- Das, J.; Vasan, V.; Sil, P.C. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol. Appl. Pharmacol. 2012, 258, 296–308. [Google Scholar] [CrossRef]
T0 | T1 | p | |
---|---|---|---|
Age | 24.6 ± 2.4 | - | |
Gender | |||
Male | 31 (59.6) | 31 (59.6) | |
Female | 21 (40.4) | 21 (40.4) | |
Education | |||
LOOH | 2.1 (1.74–2.2) | 4.2 (3.9–4.42) | <0.001 * |
MDA | 0.95 (0.88–1.0) | 2.35 (2.3–2.6) | <0.001 * |
TAC | 407.5 (390–418.5) | 230 (225–244) | <0.001 * |
GSH | 12.1 (10.77–14.9) | 6.45 (5.9–6.8) | <0.001 * |
GSSH | 2.81 (2.55–3.09) | 4.3 (3.9–4.7) | <0.001 * |
Male | Female | |||
---|---|---|---|---|
Median (I–III Quartile) | Median (I–III Quartile) | p | ||
LOOH | T0 | 2.15 (1.74–2.20) | 1.98 (1.6–2.1) | <0.001 * |
T1 | 4.1 (3.9–4.4) | 4.3 (4.1–4.6) | <0.001 * | |
p | 0.17 | 0.1 | ||
MDA | T0 | 0.95 (0.87–1.01) | 0.95 (0.9–0.99) | <0.001 * |
T1 | 2.3 (2.26–2.35) | 2.7 (2.55–2.8) | <0.001 * | |
p | 0.84 | <0.001 * | ||
TAC | T0 | 412 (390–418) | 407 (395–420) | <0.001 * |
T1 | 238 (228–249) | 225 (219–230) | <0.001 * | |
p | 0.65 | 0.0002 * | ||
GSH | T0 | 13.9 (11.05–15.9) | 11.4 (10.3–12.1) | <0.001 * |
T1 | 6.7 (6.35–6.85) | 5.9 (5.8–6.4) | <0.001 * | |
p | 0.004 * | 0.0005 * | ||
T0 | 2.85 (2.7–3.1) | 2.64 (2.45–2.97) | <0.001 * | |
GSSH | T1 | 4.5 (4.12–4.65) | 4.1 (3.7–4.7) | <0.001 * |
p | 0.05 * | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metro, D.; Corallo, F.; Fedele, F.; Buda, M.; Manasseri, L.; Buono, V.L.; Quartarone, A.; Bonanno, L. Effects of Alcohol Consumption on Oxidative Stress in a Sample of Patients Recruited in a Dietary Center in a Southern University Hospital: A Retrospective Study. Medicina 2022, 58, 1670. https://doi.org/10.3390/medicina58111670
Metro D, Corallo F, Fedele F, Buda M, Manasseri L, Buono VL, Quartarone A, Bonanno L. Effects of Alcohol Consumption on Oxidative Stress in a Sample of Patients Recruited in a Dietary Center in a Southern University Hospital: A Retrospective Study. Medicina. 2022; 58(11):1670. https://doi.org/10.3390/medicina58111670
Chicago/Turabian StyleMetro, Daniela, Francesco Corallo, Francesco Fedele, Martina Buda, Luigi Manasseri, Viviana Lo Buono, Angelo Quartarone, and Lilla Bonanno. 2022. "Effects of Alcohol Consumption on Oxidative Stress in a Sample of Patients Recruited in a Dietary Center in a Southern University Hospital: A Retrospective Study" Medicina 58, no. 11: 1670. https://doi.org/10.3390/medicina58111670
APA StyleMetro, D., Corallo, F., Fedele, F., Buda, M., Manasseri, L., Buono, V. L., Quartarone, A., & Bonanno, L. (2022). Effects of Alcohol Consumption on Oxidative Stress in a Sample of Patients Recruited in a Dietary Center in a Southern University Hospital: A Retrospective Study. Medicina, 58(11), 1670. https://doi.org/10.3390/medicina58111670