Associations of Cognitive Function with BMI, Body Fat Mass and Visceral Fat in Young Adulthood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Anthropometrics and Body Composition
2.3. Cognitive Control
2.4. Habitual Physical Activity
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Di Cesare, M.; Bentham, J.; Stevens, G.A.; Zhou, B.; Danaei, G.; Lu, Y.; Bixby, H.; Cowan, M.J.; Riley, L.M.; Hajifathalian, K.; et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar]
- GBD 2015 Obesity Collaborators; Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; et al. Health effects of overweight and obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar]
- Tian, Y.; Jiang, C.; Wang, M.; Cai, R.; Zhang, Y.; He, Z.; Wang, H.; Wu, D.; Wang, F.; Liu, X.; et al. BMI, leisure-time physical activity, and physical fitness in adults in China: Results from a series of national surveys, 2000−14. Lancet Diabetes Endocrinol. 2016, 4, 487–497. [Google Scholar] [CrossRef]
- Wormser, D.; Kaptoge, S.; Di Angelantonio, E.; Wood, A.M.; Pennells, L.; Thompson, A.; Sarwar, N.; Kizer, J.R.; Lawlor, D.A.; Nordestgaard, B.G.; et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: Collaborative analysis of 58 prospective studies. Lancet 2011, 377, 1085–1095. [Google Scholar]
- Lu, Y.; Hajifathalian, K.; Ezzati, M.; Woodward, M.; Rimm, E.B.; Danaei, G. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: A pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet 2014, 383, 970–983. [Google Scholar] [PubMed]
- Wade, K.H.; Carslake, D.; Sattar, N.; Davey Smith, G.; Timpson, N.J. BMI and Mortality in UK Biobank: Revised estimates using mendelian randomization. Obesity (Silver Spring) 2018, 26, 1796–1806. [Google Scholar] [CrossRef] [PubMed]
- Wade, K.H.; Chiesa, S.T.; Hughes, A.D.; Chaturvedi, N.; Charakida, M.; Rapala, A.; Muthurangu, V.; Khan, T.; Finer, N.; Sattar, N.; et al. Assessing the causal role of body mass index on cardiovascular health in young adults: Mendelian randomization and recall-by-genotype analyses. Circulation 2018, 138, 2187–2201. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, P.D.; Hinder, L.M.; Callaghan, B.C.; Feldman, E.L. Neurological consequences of obesity. Lancet Neurol. 2017, 16, 465–477. [Google Scholar] [CrossRef]
- Anstey, K.J.; Cherbuin, N.; Budge, M.; Young, J. Body mass index in midlife and late-life as a risk factor for dementia: A meta-analysis of prospective studies. Obes. Rev. 2011, 12, e426–e437. [Google Scholar] [CrossRef] [PubMed]
- Loef, M.; Walach, H. Midlife obesity and dementia: Meta-analysis and adjusted forecast of dementia prevalence in the United States and China. Obesity (Silver Spring) 2013, 21, E51–E55. [Google Scholar] [CrossRef]
- Sabia, S.; Kivimaki, M.; Shipley, M.J.; Marmot, M.G.; Singh-Manoux, A. Body mass index over the adult life course and cognition in late midlife: The whitehall II cohort study. Am. J. Clin. Nutr. 2009, 89, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Strachan, M.W.; Reynolds, R.M.; Marioni, R.E.; Price, J.F. Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat. Rev. Endocrinol. 2011, 7, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Nameni, G.; Farhangi, M.A.; Hajiluian, G.; Shahabi, P.; Abbasi, M.M. Insulin deficiency: A possible link between obesity and cognitive function. Int. J. Dev. Neurosci. 2017, 59, 15–20. [Google Scholar] [CrossRef]
- Cunningham, C.; Campion, S.; Lunnon, K.; Murray, C.L.; Woods, J.F.; Deacon, R.M.; Rawlins, J.N.; Perry, V.H. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol. Psychiatry 2009, 65, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Willette, A.A.; Kapogiannis, D. Does the brain shrink as the waist expands? Ageing Res. Rev. 2015, 20, 86–97. [Google Scholar] [CrossRef]
- Nolan, P.B.; Carrick-Ranson, G.; Stinear, J.W.; Reading, S.A.; Dalleck, L.C. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Prev. Med. Rep. 2017, 7, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Schippling, S.; Ostwaldt, A.C.; Suppa, P.; Spies, L.; Manogaran, P.; Gocke, C.; Huppertz, H.J.; Opfer, R. Global and regional annual brain volume loss rates in physiological aging. J. Neurol. 2017, 264, 520–528. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Allan, J.L.; McMinn, D.; Daly, M. A Bidirectional relationship between executive function and health behavior: Evidence, implications, and future directions. Front. Neurosci. 2016, 10, 386. [Google Scholar] [CrossRef] [PubMed]
- Song, T.F.; Chi, L.; Chu, C.H.; Chen, F.T.; Zhou, C.; Chang, Y.K. Obesity, cardiovascular fitness, and inhibition function: An electrophysiological study. Front. Psychol. 2016, 7, 1124. [Google Scholar] [CrossRef]
- Catoira, N.P.; Tapajóz, F.; Allegri, R.F.; Lajfer, J.; Rodríguez Cámara, M.J.; Iturry, M.L.; Castaño, G.O. Obesity, metabolic profile, and inhibition failure: Young women under scrutiny. Physiol. Behav. 2016, 157, 87–93. [Google Scholar] [CrossRef]
- Ogawa, H.; Fujitani, K.; Tsujinaka, T.; Imanishi, K.; Shirakata, H.; Kantani, A.; Hirao, M.; Kurokawa, Y.; Utsumi, S. InBody 720 as a new method of evaluating visceral obesity. Hepatogastroenterology 2011, 58, 42–44. [Google Scholar]
- Furstenberg, A.; Davenport, A. Assessment of body composition in peritoneal dialysis patients using bioelectrical impedance and dual-energy x-ray absorptiometry. Am. J. Nephrol. 2011, 33, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.F. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—Study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 2002, 15, 83–96. [Google Scholar] [PubMed]
- Kamijo, K.; Takeda, Y. Regular physical activity improves executive function during task switching in young adults. Int. J. Psychophysiol. 2010, 75, 304–311. [Google Scholar] [CrossRef]
- Rogers, R.D.; Monsell, S. Costs of a predictible switch between simple cognitive tasks. J. Exp. Psychol. Gen. 1995, 124, 207–231. [Google Scholar] [CrossRef]
- Peng, A.; Kirkham, N.Z.; Mareschal, D. Task switching costs in preschool children and adults. J. Exp. Child. Psychol. 2018, 172, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Kray, J.; Lindenberger, U. Adult age differences in task switching. Psychol. Aging 2000, 15, 126–147. [Google Scholar] [CrossRef] [PubMed]
- Themanson, J.R.; Hillman, C.H.; Curtin, J.J. Age and physical activity influences on action monitoring during task switching. Neurobiol. Aging 2006, 27, 1335–1345. [Google Scholar] [CrossRef]
- Fan, M.; Lyu, J.; He, P. Chinese guidelines for data processing and analysis concerning the International Physical Activity Questionnaire. Zhonghua Liu Xing Bing Xue Za Zhi 2014, 35, 961–964. [Google Scholar]
- Bojko, A.; Kramer, A.F.; Peterson, M.S. Age equivalence in switch costs for prosaccade and antisaccade tasks. Psychol. Aging 2004, 19, 226–234. [Google Scholar] [CrossRef]
- Rizzo, M.; Anderson, S.; Fritzsch, B. The Wiley Handbook on the Aging Mind and Brain; Wiley-Blackwell: Hoboken, NJ, USA, 2018. [Google Scholar]
- Huang, T.; Tarp, J.; Domazet, S.L.; Thorsen, A.K.; Froberg, K.; Andersen, L.B.; Bugge, A. Associations of adiposity and aerobic fitness with executive function and math performance in danish adolescents. J. Pediatr. 2015, 167, 810–815. [Google Scholar] [CrossRef]
- Kamijo, K.; Khan, N.A.; Pontifex, M.B.; Scudder, M.R.; Drollette, E.S.; Raine, L.B.; Evans, E.M.; Castelli, D.M.; Hillman, C.H. The relation of adiposity to cognitive control and scholastic achievement in preadolescent children. Obesity (Silver Spring) 2012, 20, 2406–2411. [Google Scholar] [CrossRef]
- Ntlholang, O.; McCarroll, K.; Laird, E.; Molloy, A.M.; Ward, M.; McNulty, H.; Hoey, L.; Hughes, C.F.; Strain, J.J.; Casey, M.; et al. The relationship between adiposity and cognitive function in a large community-dwelling population: Data from the Trinity Ulster Department of Agriculture (TUDA) ageing cohort study. Br. J. Nutr. 2018, 120, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Bove, R.M.; Gerweck, A.V.; Mancuso, S.M.; Bredella, M.A.; Sherman, J.C.; Miller, K.K. Association between adiposity and cognitive function in young men: Hormonal mechanisms. Obesity (Silver SpringMd) 2016, 24, 954–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okorodudu, D.O.; Jumean, M.F.; Montori, V.M.; Romero-Corral, A.; Somers, V.K.; Erwin, P.J.; Lopez-Jimenez, F. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: A systematic review and meta-analysis. Int. J. Obes. (Lond.) 2010, 34, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Kuptsova, S.V.; Ivanova, M.V.; Petrushevsky, A.G.; Fedina, O.N.; Zhavoronkova, L.A. Sex differences in visual task switching (an fMRI Study). Fiziol. Cheloveka 2015, 41, 49–64. [Google Scholar]
- Maayan, L.; Hoogendoorn, C.; Sweat, V.; Convit, A. Disinhibited eating in obese adolescents is associated with orbitofrontal volume reductions and executive dysfunction. Obesity (Silver Spring) 2011, 19, 1382–1387. [Google Scholar] [CrossRef] [PubMed]
- Limbers, C.A.; Young, D. Executive functions and consumption of fruits/vegetables and high saturated fat foods in young adults. J. Health Psychol. 2015, 20, 602–611. [Google Scholar] [CrossRef]
Variables | Women (N = 98) | Men (N = 115) | All (N = 213) | p For Gender |
---|---|---|---|---|
Age (years) | 18.6 ± 0.9 | 19.3 ± 1.1 * | 19.0 ±1.0 | <0.001 |
Height (cm) | 163.3 ± 7.0 | 174.7 ± 5.7 * | 169.4 ± 8.5 | <0.001 |
Weight (kg) | 54.8 ± 7.2 | 65.9 ± 11.3 * | 60.8 ± 11.1 | <0.001 |
BMI (kg/m2) | 20.6 ± 2.4 | 21.5 ± 3.2 * | 21.1 ± 2.9 | 0.01 |
Overweight and obesity (%) | 9.2% | 17.4% | 13.6% | 0.08 |
Body fat mass (%) | 27.1 ± 5.1 | 16.9 ± 5.5 * | 21.6 ± 7.3 | <0.001 |
Visceral fat area (cm2) | 61.7 ± 21.5 | 44.9 ± 25.1 * | 52.7 ± 49.3 | <0.001 |
IPAQ (MET-minute/week) | 2408.7 ± 1608.1 | 1827.4 ± 1404.8 | 2097.4 ± 1526.9 | 0.006 |
Women (n = 98) | Men (n = 115) | Total (n = 213) | p for Gender | |
---|---|---|---|---|
RT of pure blocks (ms) | 328.5 ± 61.9 | 325.5 ± 63.5 | 326.8 ± 62.6 | 0.73 |
Accuracy of pure blocks (%) | 95.3 ± 4.0 | 94.5 ± 5.3 | 94.9 ± 4.8 | 0.23 |
RT of mixed blocks (ms) | 563.5 ± 140.4 | 574.6 ± 156.3 | 569.5 ± 148.9 | 0.59 |
Accuracy of mixed blocks (%) | 91.0 ± 6.5 | 92.1 ± 5.3 | 91.6 ± 5.9 | 0.17 |
Global switch costs-RT (ms) | 235.0 ± 116.2 | 249.2 ± 130.5 | 242.6 ± 124.0 | 0.41 |
Global switch costs-Accuracy (%) | 4.3 ± 4.7 | 2.4 ± 5.6 | 3.3 ± 5.3 | 0.009 |
Local switch costs-RT (ms) | 52.2 ± 69.5 | 60.6 ± 66.3 | 56.7 ± 67.8 | 0.37 |
Local switch costs-Accuracy (%) | 3.2 ± 4.1 | 2.6 ± 4.8 | 2.9 ± 4.5 | 0.34 |
BMI | Body Fat Percentage | Visceral Fat Area | ||||
---|---|---|---|---|---|---|
Standardized β (95% CI) | p | Standardized β (95% CI) | p | Standardized β (95% CI) | p | |
RT of pure blocks | ||||||
Women | −0.10 (−0.36, 0.15) | 0.43 | 0.09 (−0.21, 0.39) | 0.53 | 0.04 (−0.20, 0.29) | 0.72 |
Men | 0.03 (−0.16, 0.22) | 0.77 | 0.03 (−0.25, 0.30) | 0.86 | 0.03 (−0.17, 0.24) | 0.74 |
Accuracy of pure blocks | ||||||
Women | −0.11 (−0.31, 0.09) | 0.27 | −0.04 (−0.28, 0.20) | 0.75 | −0.07 (−0.26, 0.13) | 0.51 |
Men | −0.09 (−0.30, 0.11) | 0.38 | −0.14 (−0.43, 0.15) | 0.34 | −0.12 (−0.33, 0.10) | 0.29 |
RT of mixed blocks | ||||||
Women | −0.04 (−0.28, 0.19) | 0.71 | −0.10 (−0.38, 0.18) | 0.50 | −0.01 (−0.24, 0.22) | 0.96 |
Men | 0.11 (−0.07, 0.30) | 0.23 | 0.08 (−0.19, 0.34) | 0.57 | 0.11 (−0.08, 0.31) | 0.26 |
Accuracy of mixed blocks | ||||||
Women | −0.22 (−0.46, 0.02) | 0.07 | −0.20 (−0.49, 0.08) | 0.16 | −0.20 (−0.43, 0.03) | 0.08 |
Men | −0.01 (−0.18, 0.16) | 0.90 | 0.06 (−0.18, 0.30) | 0.63 | 0.02 (−0.16, 0.20) | 0.86 |
Global switch cost-RT | ||||||
Women | −0.003 (−023, 0.23) | 0.98 | −0.15 (−0.42, 0.12) | 0.27 | −0.03 (−0.25, 0.19) | 0.78 |
Men | 0.08 (−0.09, 0.26) | 0.35 | 0.09 (−0.16, 0.35) | 0.47 | 0.10 (−0.09, 0.30) | 0.29 |
Global switch cost-Accuracy | ||||||
Women | 0.25 (0.05, 0.47) | 0.02 | 0.30 (0.05, 0.54) | 0.02 | 0.26 (0.06, 0.46) | 0.01 |
Men | −0.09 (−0.27, 0.09) | 0.32 | −0.21 (−0.48, 0.50) | 0.11 | −0.16 (−0.36, 0.04) | 0.11 |
Local switch cost-RT | ||||||
Women | −0.19 (−0.44, 0.05) | 0.12 | −0.27 (−0.56, 0.02) | 0.07 | −0.23 (−0.47, 0.004) | 0.06 |
Men | 0.11 (−0.05, 0.28) | 0.18 | 0.31 (0.07, 0.54) | 0.01 | 0.20 (0.02, 0.38) | 0.03 |
Local switch cost-Accuracy | ||||||
Women | 0.02 (−0.21, 0.25) | 0.89 | −0.14 (−0.41, 0.13) | 0.30 | −0.04 (−0.27, 0.18) | 0.69 |
Men | −0.07 (−0.26, 0.11) | 0.43 | −0.17 (−0.43, 0.10) | 0.21 | −0.11 (−0.31, 0.09) | 0.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.; Chen, Z.; Shen, L.; Fan, X.; Wang, K. Associations of Cognitive Function with BMI, Body Fat Mass and Visceral Fat in Young Adulthood. Medicina 2019, 55, 221. https://doi.org/10.3390/medicina55060221
Huang T, Chen Z, Shen L, Fan X, Wang K. Associations of Cognitive Function with BMI, Body Fat Mass and Visceral Fat in Young Adulthood. Medicina. 2019; 55(6):221. https://doi.org/10.3390/medicina55060221
Chicago/Turabian StyleHuang, Tao, Zuosong Chen, Liqun Shen, Xiang Fan, and Kun Wang. 2019. "Associations of Cognitive Function with BMI, Body Fat Mass and Visceral Fat in Young Adulthood" Medicina 55, no. 6: 221. https://doi.org/10.3390/medicina55060221
APA StyleHuang, T., Chen, Z., Shen, L., Fan, X., & Wang, K. (2019). Associations of Cognitive Function with BMI, Body Fat Mass and Visceral Fat in Young Adulthood. Medicina, 55(6), 221. https://doi.org/10.3390/medicina55060221