Clinical Trial: Effect of Autologous Dendritic Cell Administration on Improving Neuropathy Symptoms and Inflammatory Biomarkers in Diabetic Neuropathy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Subjects
2.3. Participant Characteristics
Baseline Characteristics | ||
---|---|---|
Number of subjects | 28 | |
Gender, n (%) | Men | 9 (32) |
Women | 19 (68) | |
Age, mean | 61 ± 9.5 | |
Comorbidities, n (%) | Hypertension | 26 (93) |
Heart disease | 11 (39) | |
Stroke | 1 (4) | |
Osteoarthritis | 8 (8) | |
BMI, n (%) | Underweight | 2 (7) |
Normal weight | 8 (29) | |
Overweight | 13 (46) | |
Obese | 5 (18) | |
Types of Anti-diabetics, n (%) | Sulfonylurea | 9 (32) |
Biguanide | 7 (25) | |
α-Glucosidase inhibitor | 5 (18) | |
DPP4 inhibitors | 3 (11) | |
SGLT2 inhibitors | 4 (14) | |
Insulin | 20 (71) |
2.4. Study Procedure
2.5. Clinical and Laboratory Assessments
2.6. Autologous DC Preparation
2.7. Clinical Evaluation and Laboratory Testing
2.8. Statistical Analysis
3. Results
3.1. Changes in the TCNS
Variables | Mean (Std. Deviation) | p Value Hypothesis Test |
---|---|---|
TCNS Before | 8.93 (2.73) | <0.001 |
TCNS After | 7.5 (3.03) | |
VCAM-1 Before | 1389.75 ng/mL (368.12) | 0.101 |
VCAM-1 After | 1403.85 ng/mL (410) | |
TGF-β Before | 41.16 ng/mL (11.83) | 0.835 |
TGF-β After | 44,18 ng/mL (15.25) |
Diabetic Neuropathy Criteria (by the TCNS) | Before DC Administration | After DC Administration |
---|---|---|
Mild Neuropathy | 12 | 19 |
Moderate Neuropathy | 11 | 6 |
Severe Neuropathy | 5 | 3 |
3.2. Effect on Fasting Blood Glucose
Variables | Mean ± SD | p-Value Hypothesis Test |
---|---|---|
Fasting Blood Glucose Before | 143.07 ± 54.2 | 0.970 |
Fasting Blood Glucose After | 143.46 ± 47.1 |
3.3. Effect on VCAM-1 and TGF-β Levels
3.4. Correlation of the TCNS and TGF-β and VCAM-1 Levels
TCNS Before | TCNS After | TGF-β Before | TGF-β After | |||||
---|---|---|---|---|---|---|---|---|
Correlation | p-Value | Correlation | p-Value | Correlation | p-Value | Correlation | p-Value | |
VCAM-1 before | 0.117 | 0.277 | 0.125 | 0.263 | −0.338 | 0.039 | −0.197 | 0.158 |
VCAM-1 after | 0.264 | 0.87 | 0.262 | 0.089 | −0.521 | 0.002 | −0.397 | 0.018 |
TGF-β before | −0.300 | 0.061 | −0.326 | 0.045 | ||||
TGF-β after | −0.320 | 0.048 | −0.353 | 0.033 |
Diabetic Neuropathy * Criteria | Mean TGF-β Change (SD) | p-Value 1 | p-Value 2 | Mean VCAM-1 Change (SD) | p-Value 1 | p-Value 2 |
---|---|---|---|---|---|---|
No Change n = 16 | 0.821 (8.1) | 0.692 | 0.158 | −6.25 (329.7) | 0.941 | 0.733 |
Improved n = 12 | 5.941 (49.8) | 0.076 | 41.25 (399) | 0.727 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Ji, Q.; Ran, X.; Li, C.; Xue, Y.; Feng, B.; Zhu, D. 203-LB: Prevalence and Risk Factors of Diabetic Peripheral Neuropathy—A Population-Based Cross-Sectional Study in China. Diabetes 2023, 72, 203-LB. [Google Scholar] [CrossRef]
- Sabari, N.; Mellow, P.A.; Malonda, F.V. The Association of Duration of Type 2 Diabetes Mellitus with the Prevalence of Peripheral Diabetic Neuropathy. J. Widya Med. Jr. 2022, 4, 82–86. [Google Scholar] [CrossRef]
- Soeatmadji, D.W.; Rosandi, R.; Saraswati, M.R.; Sibarani, R.P.; Tarigan, W.O. Clinicodemographic Profile and Outcomes of Type 2 Diabetes Mellitus in the Indonesian Cohort of DISCOVER: A 3-Year Prospective Cohort Study. J. ASEAN Fed. Endocr. Soc. 2023, 38, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Akmal, A.; Syarif, H.; Husna, C. The Relationship Between Patient Characteristics Diabetes Self-Care Management with Diabetic Peripheral Neuropathy in Type 2 DM Patients in Regional General Hospital in Indonesia. Int. J. Nurs. Educ. 2022, 14, 32–38. [Google Scholar] [CrossRef]
- Idiaquez, J.F.; Alcantara, M.; Bril, V. Optimal Cut-off Value of the Modified Toronto Clinical Neuropathy Score in the Diagnosis of Polyneuropathy. Eur. J. Neurol. 2023, 30, 2481–2487. [Google Scholar] [CrossRef]
- Zilliox, L.A.; Ruby, S.K.; Singh, S.; Zhan, M.; Russell, J.W. Clinical Neuropathy Scales in Neuropathy Associated with Impaired Glucose Tolerance. J. Diabetes Complicat. 2015, 29, 372–377. [Google Scholar] [CrossRef]
- Yalçın, M.B.; Bora, E.S.; Çakır, A.; Akbulut, S.; Erbaş, O. Autophagy and Anti-Inflammation Ameliorate Diabetic Neuropathy with Rilmenidine. Acta Cir. Bras. 2023, 38, e387823. [Google Scholar] [CrossRef]
- Luu, L.; Adamzadeh, B.; Neumiller, J.J. Update on the Management of Diabetic Kidney Disease. U.S. Pharm. 2021, 46, 57–67. [Google Scholar]
- Ristikj-Stomnaroska, D.; Risteska-Nejashmikj, V.; Papazova, M. Role of Inflammation in the Pathogenesis of Diabetic Peripheral Neuropathy. Open Access Maced. J. Med. Sci. 2019, 7, 2267–2270. [Google Scholar] [CrossRef]
- Bell, G.M.; Anderson, A.E.; Diboll, J.; Reece, R.; Eltherington, O.; Harry, R.A.; Fouweather, T.; MacDonald, C.; Chadwick, T.; McColl, E.; et al. Autologous Tolerogenic Dendritic Cells for Rheumatoid and Inflammatory Arthritis. Ann. Rheum. Dis. 2017, 76, 227–234. [Google Scholar] [CrossRef]
- Sampangi, S.; Kassianos, A.J.; Wang, X.; Beagley, K.W.; Klein, T.J.; Afrin, S.; Healy, H.; Wilkinson, R. The Mechanisms of Human Renal Epithelial Cell Modulation of Autologous Dendritic Cell Phenotype and Function. PLoS ONE 2015, 10, e0134688. [Google Scholar] [CrossRef] [PubMed]
- Kassianos, A.J.; Sampangi, S.; Wang, X.; Roper, K.E.; Beagley, K.W.; Healy, H.; Wilkinson, R. Human Proximal Tubule Epithelial Cells Modulate Autologous Dendritic Cell Function. Nephrol. Dial. Transplant. 2013, 28, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Willekens, B.; Presas-Rodríguez, S.; Mansilla, M.; Derdelinckx, J.; Lee, W.-P.; Nijs, G.; De Laere, M.; Wens, I.; Cras, P.; Parizel, P.; et al. Tolerogenic Dendritic Cell-Based Treatment for Multiple Sclerosis (MS): A Harmonised Study Protocol for Two Phase I Clinical Trials Comparing Intradermal and Intranodal Cell Administration. BMJ Open 2019, 9, e030309. [Google Scholar] [CrossRef] [PubMed]
- Jonny; Sitepu, E.C.; Nidom, C.A.; Wirjopranoto, S.; Sudiana, I.K.; Ansori, A.N.M.; Putranto, T.A. Ex Vivo-Generated Tolerogenic Dendritic Cells: Hope for a Definitive Therapy of Autoimmune Diseases. Curr. Issues Mol. Biol. 2024, 46, 4035–4048. [Google Scholar] [CrossRef]
- Jonny; Putranto, T.A.; Purnama, Y.; Djatmiko, R.; Yana, M.L.; Sitepu, E.C.; Irfon, R. Significant Improvement of Systemic Lupus Erythematosus Manifestation in Children after Autologous Dendritic Cell Transfer: A Case Report and Review of Literature. Ther. Adv. Vaccines Immunother. 2023, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Nistor, G.I.; Dillman, R.O.; Robles, R.M.; Langford, J.L.; Poole, A.J.; Sofro, M.A.U.; Nency, Y.M.; Jonny, J.; Yana, M.L.; Karyana, M.; et al. A Personal COVID-19 Dendritic Cell Vaccine Made at Point-of-Care: Feasibility, Safety, and Antigen-Specific Cellular Immune Responses. Hum. Vaccines Immunother. 2022, 18, 2100189. [Google Scholar] [CrossRef]
- Dillman, R.O.; Nistor, G.I.; Jonny, J.; Yana, M.L.; Langford, J.L.; Putranto, T.A.; Keirstead, H.S. Prevention of Symptomatic Covid-19 Infection by Personal Dendritic Cell Vaccine. J. Vaccines Immunol. Immunopathol. 2023, 8, 189. [Google Scholar] [CrossRef]
- Jonny, J.; Putranto, T.A.; Yana, M.L.; Sitepu, E.C.; Irfon, R.; Ramadhani, B.P.; Sofro, M.A.U.; Nency, Y.M.; Lestari, E.S.; Triwardhani, R.; et al. Safety and Efficacy of Dendritic Cell Vaccine for COVID-19 Prevention after 1-Year Follow-up: Phase I and II Clinical Trial Final Result. Front. Immunol. 2023, 14, 1122389. [Google Scholar] [CrossRef]
- Askari, V.R.; Khosravi, K.; Baradaran Rahimi, V.; Garzoli, S. A Mechanistic Review on How Berberine Use Combats Diabetes and Related Complications: Molecular, Cellular, and Metabolic Effects. Pharmaceuticals 2023, 17, 7. [Google Scholar] [CrossRef]
- Zhou, G.; Yan, M.; Guo, G.; Tong, N. Ameliorative Effect of Berberine on Neonatally Induced Type 2 Diabetic Neuropathy via Modulation of BDNF, IGF-1, PPAR-γ, and AMPK Expressions. Dose Response 2019, 17, 1559325819862449. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Gupta, D.P.; Park, S.H.; Yang, H.-J.; Song, G.J. Anti-Inflammatory Effects of Dimethyl Fumarate in Microglia via an Autophagy Dependent Pathway. Front. Pharmacol. 2021, 12, 612981. [Google Scholar] [CrossRef] [PubMed]
- Moon, E.; Lee, S.O.; Kang, T.H.; Kim, H.J.; Choi, S.Z.; Son, M.-W.; Kim, S.Y. Dioscorea Extract (DA-9801) Modulates Markers of Peripheral Neuropathy in Type 2 Diabetic Db/Db Mice. Biomol. Ther. 2014, 22, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Navarro-González, J.F.; Mora-Fernández, C.; Muros de Fuentes, M.; Chahin, J.; Méndez, M.L.; Gallego, E.; Macía, M.; del Castillo, N.; Rivero, A.; Getino, M.A.; et al. Effect of Pentoxifylline on Renal Function and Urinary Albumin Excretion in Patients with Diabetic Kidney Disease: The PREDIAN Trial. J. Am. Soc. Nephrol. 2015, 26, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Thakur, V.; Gonzalez, M.; Pennington, K.; Chattopadhyay, M. Viral Vector Mediated Continuous Expression of Interleukin-10 in DRG Alleviates Pain in Type 1 Diabetic Animals. Mol. Cell. Neurosci. 2016, 72, 46–53. [Google Scholar] [CrossRef]
- Yang, J.; Yang, X.; Wu, G.; Huang, F.; Shi, X.; Wei, W.; Zhang, Y.; Zhang, H.; Cheng, L.; Yu, L.; et al. Gut Microbiota Modulate Distal Symmetric Polyneuropathy in Patients with Diabetes. Cell Metab. 2023, 35, 1548–1562.e7. [Google Scholar] [CrossRef]
- Echeverry, S.; Shi, X.Q.; Haw, A.; Liu, H.; Zhang, Z.W.; Zhang, J. Transforming Growth Factor-Β1 Impairs Neuropathic Pain through Pleiotropic Effects. Mol. Pain 2009, 5, 1744–8069. [Google Scholar] [CrossRef]
- Dobolyi, A.; Vincze, C.; Pál, G.; Lovas, G. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins. Int. J. Mol. Sci. 2012, 13, 8219–8258. [Google Scholar] [CrossRef]
- Ding, Z.; Jiang, M.; Qian, J.; Gu, D.; Bai, H.; Cai, M.; Yao, D. Role of Transforming Growth Factor-β in Peripheral Nerve Regeneration. Neural Regen. Res. 2024, 19, 380–386. [Google Scholar] [CrossRef]
- Ye, Z.; Wei, J.; Zhan, C.; Hou, J. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms. Front. Neurosci. 2022, 16, 917587. [Google Scholar] [CrossRef]
- Li, H.; Chang, H.-M.; Lin, Y.-M.; Shi, Z.; Leung, P.C.K. TGF-Β1 Inhibits Microvascular-like Formation by Decreasing VCAM1 and ICAM1 via the Upregulation of SNAIL in Human Granulosa Cells. Mol. Cell. Endocrinol. 2021, 535, 111395. [Google Scholar] [CrossRef]
- Park, S.-K.; Yang, S.; Lee, S.K.; Ahn, H.; Park, J.S.; Hwang, O.; Lee, J.D. TGF-b 1 Down-Regulates Inflammatory Cytokine-Induced VCAM-1 Expression in Cultured Human Glomerular Endothelial Cells. Nephrol. Dial. Transplant. 2000, 15, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-R.; Cheng, B.-C.; Lin, C.-N.; Chiu, W.-C.; Lin, T.-Y.; Chiang, H.-C.; Kuo, C.-E.A.; Huang, C.-C.; Lu, C.-H. The Effects of Indoxyl Sulfate and Oxidative Stress on the Severity of Peripheral Nerve Dysfunction in Patients with Chronic Kidney Diseases. Antioxidants 2022, 11, 2350. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, Y.; Matsui, T.; Matsumoto, T.; Kato, H.; Yamagishi, S.-I. Ranirestat Has a Stronger Inhibitory Activity on Aldose Reductase and Suppresses Inflammatory Reactions in High Glucose-Exposed Endothelial Cells. Diab. Vasc. Dis. Res. 2016, 13, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Janowska, J.; Chudek, J.; Olszanecka-Glinianowicz, M.; Semik-Grabarczyk, E.; Zahorska-Markiewicz, B. Interdependencies among Selected Pro-Inflammatory Markers of Endothelial Dysfunction, C-Peptide, Anti-Inflammatory Interleukin-10 and Glucose Metabolism Disturbance in Obese Women. Int. J. Med. Sci. 2016, 13, 490–499. [Google Scholar] [CrossRef]
- Chen, L.; Lin, S.-X.; Amin, S.; Overbergh, L.; Maggiolino, G.; Chan, L.S. VCAM-1 Blockade Delays Disease Onset, Reduces Disease Severity and Inflammatory Cells in an Atopic Dermatitis Model. Immunol. Cell Biol. 2010, 88, 334–342. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, S.; Sun, G.; Zhang, R.; Li, X.; Zhang, Y.; Huang, F.; Yuan, D. Hyperglycemia Aggravates Monocyte-Endothelial Adhesion in Human Umbilical Vein Endothelial Cells from Women with Gestational Diabetes Mellitus by Inducing Cx43 Overexpression. Ann. Transl. Med. 2021, 9, 234. [Google Scholar] [CrossRef]
- Perkins, J.M.; Joy, N.G.; Tate, D.B.; Davis, S.N. Acute Effects of Hyperinsulinemia and Hyperglycemia on Vascular Inflammatory Biomarkers and Endothelial Function in Overweight and Obese Humans. Am. J. Physiol. Endocrinol. Metab. 2015, 309, E168–E176. [Google Scholar] [CrossRef]
- Yang, H.; Sloan, G.; Ye, Y.; Wang, S.; Duan, B.; Tesfaye, S.; Gao, L. New Perspective in Diabetic Neuropathy: From the Periphery to the Brain, a Call for Early Detection, and Precision Medicine. Front. Endocrinol. 2020, 10, 929. [Google Scholar] [CrossRef]
- Albers, J.W.; Pop-Busui, R. Diabetic Neuropathy: Mechanisms, Emerging Treatments, and Subtypes. Curr. Neurol. Neurosci. Rep. 2014, 14, 473. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setiawan, E.; Ginting, C.N.; Jonny, J.; Hernowo, B.A.; Putranto, T.A. Clinical Trial: Effect of Autologous Dendritic Cell Administration on Improving Neuropathy Symptoms and Inflammatory Biomarkers in Diabetic Neuropathy. Curr. Issues Mol. Biol. 2024, 46, 14366-14380. https://doi.org/10.3390/cimb46120861
Setiawan E, Ginting CN, Jonny J, Hernowo BA, Putranto TA. Clinical Trial: Effect of Autologous Dendritic Cell Administration on Improving Neuropathy Symptoms and Inflammatory Biomarkers in Diabetic Neuropathy. Current Issues in Molecular Biology. 2024; 46(12):14366-14380. https://doi.org/10.3390/cimb46120861
Chicago/Turabian StyleSetiawan, Erwin, Chrismis Novalinda Ginting, Jonny Jonny, Bhimo Aji Hernowo, and Terawan Agus Putranto. 2024. "Clinical Trial: Effect of Autologous Dendritic Cell Administration on Improving Neuropathy Symptoms and Inflammatory Biomarkers in Diabetic Neuropathy" Current Issues in Molecular Biology 46, no. 12: 14366-14380. https://doi.org/10.3390/cimb46120861
APA StyleSetiawan, E., Ginting, C. N., Jonny, J., Hernowo, B. A., & Putranto, T. A. (2024). Clinical Trial: Effect of Autologous Dendritic Cell Administration on Improving Neuropathy Symptoms and Inflammatory Biomarkers in Diabetic Neuropathy. Current Issues in Molecular Biology, 46(12), 14366-14380. https://doi.org/10.3390/cimb46120861