You are currently viewing a new version of our website. To view the old version click .
  • Current Issues in Molecular Biology is published by MDPI from Volume 43 Issue 1 (2021). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Caister Press.
  • Review
  • Open Access

6 July 2017

Using Metagenomics to Connect Microbial Community Biodiversity and Functions

,
,
,
,
and
1
Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of São Paulo, Piracicaba, SP, Brazil
2
Computational Science Research Center, San Diego State University, San Diego, CA, USA
*
Author to whom correspondence should be addressed.

Abstract

Microbes constitute about a third of the Earth's biomass and are composed by an enormous genetic diversity. In a majority of environments the microbial communities play crucial roles for the ecosystem functioning, where a drastic biodiversity alteration or loss could lead to negative effects on the environment and sustainability. A central goal in microbiome studies is to elucidate the relation between microbial diversity to functions. A better understanding of the relation diversity-function would increase the ability to manipulate that diversity to improve plant and animal health and also setting conservation priorities. The recent advances in genomic methodologies in microbial ecology have provided means to assess highly complex communities in detail, making possible the link between diversity and the functions performed by the microbes. In this work we first explore some advances in bioinformatics tools to connect the microbial community biodiversity to their potential metabolism and after present some examples of how this information can be useful for a better understanding of the microbial role in the environment.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.