Ginsenoside Re as a Probe for Evaluating the Catalytic Potential of Microcrystalline Cellulose for the Degradation of Active Pharmaceutical Ingredients
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ginsenoside Re Hydrolysis Catalyzed by Diluted Acid and Microcrystalline Cellulose
2.2. Hydrolysis Catalytic Activities of Acid-Treated Cellulose for Ginsenoside Re Hydrolysis
2.3. Sensitivity of Ginsenoside Re to Dilute Acid
2.4. Effects of Commercial Microcrystalline Cellulose on Ginsenoside Re Hydrolysis
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Preparation of Microcrystalline Cellulose and Partially Hydrolyzed Cellulose
3.2.2. Determination of pH of Microcrystalline Cellulose
3.2.3. Neutralization of the Acidic Residue of the Microcrystalline Cellulose
3.2.4. Determination of Sulfur in Microcrystalline Cellulose
3.2.5. Hydrolysis Catalytic Activity of Cellulose
3.2.6. Hydrolysis Catalytic Activity of Cellulose Supernatant
3.2.7. Determination of Ginsenosides and Their Hydrolysates
3.2.8. Evaluation of the Catalytic Potential of Commercially Available MCCs for Ginsenoside Re Hydrolysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakamura, S.; Tanaka, C.; Yuasa, H.; Sakamoto, T. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression. AAPS PharmSciTech 2019, 20, 151. [Google Scholar] [CrossRef] [PubMed]
- Hindi, S.S.Z. Microcrystalline Cellulose: The Inexhaustible Treasure for Pharmaceutical Industry. Nanosci. Nanotechnol. Res. 2017, 4, 17–24. [Google Scholar]
- Yue, X.; He, J.; Xu, Y.; Yang, M.; Xu, Y. A novel method for preparing microcrystalline cellulose from bleached chemical pulp using transition metal ions enhanced high temperature liquid water process. Carbohydr. Polym. 2019, 208, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Pachuau, L.; Dutta, R.S.; Hauzel, L.; Devi, T.B.; Deka, D. Evaluation of novel microcrystalline cellulose from Ensete glaucum (Roxb.) Cheesman biomass as sustainable drug delivery biomaterial. Carbohydr. Polym. 2019, 206, 336–343. [Google Scholar] [CrossRef] [PubMed]
- WHO. Microcrystalline cellulose (Cellulosum microcrystallinum). In The International Pharmacopoeia, 52nd ed.; WHO: Geneva, Switzerland, 2025. [Google Scholar]
- USP40 NF35; Microcrystalline Cellulose. Convention TUSP: North Bethesda, MD, USA, 2017; pp. 7589–7591.
- Janvalkar, M.; Kaloji, P.; Shettigar, R. Microcrystalline Cellulose in Pharmaceutical Formulations: A Comprehensive Review on Applications, Concentrations, And Functional Attributes. Int. J. Pharm. Sci. 2025, 3, 3098–3112. [Google Scholar] [CrossRef]
- Trache, D.; Hussin, M.H.; Hui Chuin, C.T.; Sabar, S.; Fazita, M.R.; Taiwo, O.F.; Hassan, T.M.; Haafiz, M.K. Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review. Int. J. Biol. Macromol. 2016, 93, 789–804. [Google Scholar] [CrossRef] [PubMed]
- Mihranyan, A.; Strømme, M.; Ek, R. Influence of cellulose powder structure on moisture-induced degradation of acetylsalicylic acid. Eur. J. Pharm. Sci. 2006, 27, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Vehovec, T.; Gartner, A.; Planinsek, O.; Obreza, A. Influence of different types of commercially available microcrystalline cellulose on degradation of perindopril erbumine and enalapril maleate in binary mixtures. Acta Pharm. 2012, 62, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Heidarian, M.; Mihranyan, A.; Strømme, M.; Ek, R. Influence of water-cellulose binding energy on stability of acetylsalicylic acid. Int. J. Pharm. 2006, 323, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Awa, K.; Shinzawa, H.; Ozaki, Y. The effect of microcrystalline cellulose crystallinity on the hydrophilic property of tablets and the hydrolysis of acetylsalicylic acid as active pharmaceutical ingredient inside tablets. AAPS PharmSciTech 2015, 16, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, D.O.; Hua, K.; Forsgren, J.; Mihranyan, A. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose. Int. J. Pharm. 2014, 461, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Emenike, E.; Iwuozor, K.; Saliu, O.; Ramontja, J.; Adeniyi, A. Advances in the Extraction, Classification, Modification, Emerging and Advanced Applications of Crystalline Cellulose: A Review. Carbohydr. Polym. Technol. Appl. 2023, 6, 100337. [Google Scholar] [CrossRef]
- Park, J.D.; Lee, Y.H.; Kim, S.I. Ginsenoside Rf2, a new dammarane glycoside from Korean red ginseng (Panax ginseng). Arch. Pharmacal Res. 1998, 21, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.-H.; Park, J.-H.; Kim, T.-H.; Sohn, D.H.; Kim, J.M.; Park, J.H. A genuine dammarane glycoside, (20E)-ginsenoside F4 from Korean red ginseng. Arch. Pharmacal Res. 1996, 19, 335. [Google Scholar] [CrossRef]
- Yang, X.W.; Li, L.Y.; Tian, J.M.; Zhang, Z.W.; Ye, J.M.; Gu, W.F. Ginsenoside-Rg 6, a novel triterpenoid saponin from the stem-leaves of Panax ginseng C. A. Mey. Chin. Chem. Lett. 2000, 11, 909–912. [Google Scholar]
- Buda, V.; Andor, M.; Ledeti, A.; Ledeti, I.; Vlase, G.; Vlase, T.; Cristescu, C.; Voicu, M.; Suciu, L.; Tomescu, M.C. Comparative Solid-State Stability of Perindopril Active Substance vs. Pharmaceutical Formulation. Int. J. Mol. Sci. 2017, 18, 164. [Google Scholar] [CrossRef] [PubMed]
- Marchessault, R.H.; Morehead, F.F.; Koch, M.J. Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J. Colloid Sci. 1961, 16, 327–344. [Google Scholar] [CrossRef]
- Bae, D.H.; Choi, H.J.; Choi, K.; Nam, J.D.; Islam, M.S.; Kao, N. Fabrication of phosphate microcrystalline rice husk based cellulose particles and their electrorheological response. Carbohydr. Polym. 2017, 165, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Duan, C.; Elias, R.; Lucia, L.A.; Fu, S. A new protocol for efficient and high yield preparation of cellulose nanofibrils. Cellulose 2019, 26, 877–887. [Google Scholar] [CrossRef]
- GB 1886.103-2015; National Food Safety Standard—Food Additives—Microcrystalline Cellulose. China’s Standard Press: Beijing, China, 2015.
MCC | Re Hydrolysis Rate % | |
---|---|---|
MCC | Supernatant | |
Ctrl | - | 1.5 ± 0.5 |
MCC-S | 89 ± 10 | 2.8 ± 0.3 |
MCC-C | 71 ± 10 | 1.9 ± 0.2 |
MCC-Sn 1 | 4.4 ± 0.7 | - |
MCC-Cn 1 | 1.2 ± 0.2 | - |
Concentration a, μM | Calculated pH | Re Hydrolysis Rate, % | RSD, % |
---|---|---|---|
Ctrl | - | 1.5 ± 0.5 | 35.6 |
14.72 | 4.5 | 99.7 ± 0.1 | 0.1 |
7.36 | 4.8 | 96.9 ± 0.7 | 3.7 |
3.68 | 5.1 | 8.5 ± 1.3 | 15.0 |
MCC | Re Hydrolysis Rate % | |
---|---|---|
MCC | Supernatant | |
Ctrl | - | 1.5 ± 0.5 |
MCC-1 | 80.2 ± 10.7 | 3.3 ± 0.0 |
MCC-2 | 52.1 ± 0.3 | 0.6 ± 0.1 |
MCC-3 | 4.7 ± 0.0 | 0.5 ± 0.0 |
MCC-4 | 5.3 ± 0.6 | 0.7 ± 0.0 |
MCC-5 | 9.9 ± 0.1 | 0.3 ± 0.0 |
Concentration, ppm | Calculated pH | Ro hydrolysis Rate % | |
---|---|---|---|
Ctrl | - | - | 6.1 ± 1.0 |
Sulfuric acid | 0.8 a | 4.5 | 6.3 ± 1.3 |
0.4 | 4.8 | 11.6 ± 3.0 | |
0.2 | 5.1 | 5.0 ± 0.0 | |
Na2CO3 | 80 b | 10.5 | 85.9 ± 13.3 |
0.8 | 9.0 | 37.4 ± 0.4 | |
0.4 | 8.7 | 22.1 ± 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Xiao, S. Ginsenoside Re as a Probe for Evaluating the Catalytic Potential of Microcrystalline Cellulose for the Degradation of Active Pharmaceutical Ingredients. Pharmaceuticals 2025, 18, 869. https://doi.org/10.3390/ph18060869
Gao X, Xiao S. Ginsenoside Re as a Probe for Evaluating the Catalytic Potential of Microcrystalline Cellulose for the Degradation of Active Pharmaceutical Ingredients. Pharmaceuticals. 2025; 18(6):869. https://doi.org/10.3390/ph18060869
Chicago/Turabian StyleGao, Xinyu, and Shengyuan Xiao. 2025. "Ginsenoside Re as a Probe for Evaluating the Catalytic Potential of Microcrystalline Cellulose for the Degradation of Active Pharmaceutical Ingredients" Pharmaceuticals 18, no. 6: 869. https://doi.org/10.3390/ph18060869
APA StyleGao, X., & Xiao, S. (2025). Ginsenoside Re as a Probe for Evaluating the Catalytic Potential of Microcrystalline Cellulose for the Degradation of Active Pharmaceutical Ingredients. Pharmaceuticals, 18(6), 869. https://doi.org/10.3390/ph18060869