Improving the Dosing Schedules of Targeted Anticancer Agents
Abstract
:1. Introduction
2. History of Anticancer Agent Dosing
3. Post-Approval Dosing Reassessment to Improve the Balance of Benefits/Risks
3.1. Approval Dosing and Tolerance Concerns
3.1.1. Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia
3.1.2. Trastuzumab Deruxtecan
3.2. Refinement of the Dose/Effect Relationship
3.2.1. Nivolumab
3.2.2. Ibrutinib
3.2.3. Sotorasib
3.2.4. Niraparib
3.3. The Improvement of the Convenience of the Treatment
3.3.1. Carfilzomib
3.3.2. Monoclonal Antibodies
3.4. Duration of Treatment
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Min, H.Y.; Lee, H.Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 2022, 54, 1670–1694. [Google Scholar] [CrossRef] [PubMed]
- Sonkin, D.; Thomas, A.; Teicher, B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024, 286–287, 18–24. [Google Scholar] [CrossRef]
- Paul, S.; Konig, M.F.; Pardoll, D.M.; Bettegowda, C.; Papadopoulos, N.; Wright, K.M.; Gabelli, S.B.; Ho, M.; van Elsas, A.; Zhou, S. Cancer therapy with antibodies. Nat. Rev. Cancer 2024, 24, 399–426. [Google Scholar] [CrossRef] [PubMed]
- van de Donk, N.W.C.J.; Zweegman, S. T-cell-engaging bispecific antibodies in cancer. Lancet 2023, 402, 142–158. [Google Scholar] [CrossRef]
- Brudno, J.N.; Maus, M.V.; Hinrichs, C.S. CAR T Cells and T-Cell Therapies for cancer: A translational science review. JAMA 2024, 332, 1924–1935. [Google Scholar] [CrossRef] [PubMed]
- Bedard, P.L.; Hyman, D.M.; Davids, M.S.; Siu, L.L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 2020, 395, 1078–1088. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.R.; Grillo-López, A.; Varns, C.; Chambers, K.S.; Hanna, N. Targeted anti-cancer therapy using rituximab, a chimaeric anti-CD20 antibody (IDEC-C2B8) in the treatment of non-Hodgkin’s B-cell lymphoma. Biochem. Soc. Trans. 1997, 25, 705–708. [Google Scholar] [CrossRef]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef]
- Druker, B.J.; David, A. Karnofsky Award lecture. Imatinib as a paradigm of targeted therapies. J. Clin. Oncol. 2003, 21 (Suppl. S23), 239s–245s. [Google Scholar] [CrossRef]
- Prasad, V. The precision-oncology illusion. Nature 2016, 537, S63. [Google Scholar] [CrossRef]
- Tannock, I.F.; Hickman, J.A. Limits to personalized cancer medicine. N. Engl. J. Med 2016, 375, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.M.; Ramsey, S.; Shankaran, V. Financial toxicity in cancer care: Implications for clinical care and potential practice solutions. J. Clin. Oncol. 2023, 41, 3051–3058. [Google Scholar] [CrossRef]
- Salas-Vega, S.; Iliopoulos, O.; Mossialos, E. Assessment of overall survival, quality of life, and safety benefits associated with new cancer medicines. JAMA Oncol. 2017, 3, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Haslam, A.; Kim, M.S.; Elbaz, J.; Prasad, V. The landscape of checkpoint inhibitors in oncology. Eur. J. Cancer 2024, 209, 114240. [Google Scholar] [CrossRef] [PubMed]
- Haslam, A.; Kim, M.S.; Prasad, V. Overall survival for oncology drugs approved for genomic indications. Eur. J. Cancer 2021, 156, 164–174. [Google Scholar] [CrossRef]
- Tibau, A.; Hwang, T.J.; Molto, C.; Avorn, J.; Kesselheim, A.S. Clinical value of molecular targets and FDA-approved genome-targeted Cancer Therapies. JAMA Oncol. 2024, 10, 634–641. [Google Scholar] [CrossRef]
- Tourneau, C.L.; Delord, J.-P.; Gonçalves, A.; Gavoille, C.; Dubot, C.; Isambert, N.; Campone, M.; Trédan, O.; Massiani, M.A.; Mauborgne, C.; et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): A multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. 2015, 16, 1324–1334. [Google Scholar] [CrossRef]
- Miljkovic, M.D.; Tuia, J.; Olivier, T.; Haslam, A.; Prasad, V. Cancer drug price and novelty in mechanism of action. JAMA Netw. Open 2023, 6, e2347006. [Google Scholar] [CrossRef]
- Levêque, D. Dose reassessment: An answer to the high cost of drugs used in oncology? Bull. Cancer 2019, 106, 719–724. [Google Scholar] [CrossRef]
- Ratain, M.J.; Goldstein, D.A.; Lichter, A.S. Interventional pharmacoeconomics—A new discipline for a cost-constrained environment. JAMA Oncol. 2019, 5, 1097–1098. [Google Scholar] [CrossRef]
- Shah, M.; Rahman, A.; Theoret, M.R.; Pazdur, R. The drug-dosing conundrum in oncology—When less is more. N. Engl. J. Med. 2021, 385, 1445–1447. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Eisenhauer, E.A.; Booth, C.M. The time toxicity of cancer treatment. J. Clin. Oncol. 2022, 40, 1611–1615. [Google Scholar] [CrossRef]
- Jacobson, S.I.; Kacew, A.J.; Knoebel, R.W.; Hsieh, P.H.; Ratain, M.J.; Strohbehn, G.W. Alternative trastuzumab dosing schedules are associated with reductions in health care greenhouse gas emissions. JCO Oncol. Pract. 2023, 19, 799–807. [Google Scholar] [CrossRef]
- Cliff, E.R.S.; Rome, R.S.; Kesselheim, A.S.; Rome, B.N. National Comprehensive Cancer Network guideline recommendations of cancer drugs with accelerated approval. JAMA Netw. Open 2023, 6, e2343285. [Google Scholar] [CrossRef] [PubMed]
- Pinkel, D. The use of body surface area as a criterion of drug dosage in cancer chemotherapy. Cancer Res. 1958, 18, 853–856. [Google Scholar]
- Mathijssen, R.H.; de Jong, F.A.; Loos, W.; van der Bol, J.M.; Verweij, J.; Sparreboom, A. Flat-fixed dosing versus body surface area based dosing of anticancer drugs in adults: Does it make a difference? Oncologist 2007, 12, 913–923. [Google Scholar] [CrossRef]
- European Medicines Agency. Mabthera. Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/mabthera-epar-product-information_en.pdf (accessed on 16 April 2025).
- European Medicines Agency. Herceptin. Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/herceptin-epar-product-information_en.pdf (accessed on 16 April 2025).
- European Medicines Agency. Darzalex. Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/darzalex-epar-product-information_en.pdf (accessed on 16 April 2025).
- European Medicines Agency. Vidaza. Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/vidaza-epar-product-information_en.pdf (accessed on 16 April 2025).
- European Medicines Agency. Onureg. Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/onureg-epar-product-information_en.pdf (accessed on 16 April 2025).
- Eksborg, S.; Ehrsson, H. Drug level monitoring: Cytostatics. J. Chromatogr. 1985, 340, 31–72. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.J.; Erlichman, C. Therapeutic drug monitoring in oncology. Problems and potential in antineoplastic therapy. Clin. Pharmacokinet. 1987, 13, 205–227. [Google Scholar] [CrossRef]
- Bardin, C.; Veal, G.; Paci, A.; Chatelut, E.; Astier, A.; Levêque, D.; Widmer, N.; Beijnen, J. Therapeutic drug monitoring in cancer-are we missing a trick? Eur. J. Cancer 2014, 50, 2005–2009. [Google Scholar] [CrossRef]
- Fety, R.; Rolland, F.; Barberi-Heyob, M.; Hardouin, A.; Campion, L.; Conroy, T.; Merlin, J.L.; Rivière, A.; Perrocheau, G.; Etienne, M.C.; et al. Clinical impact of pharmacokinetically-guided dose adaptation of 5-fluorouracil: Results from a multicentric randomized trial in patients with locally advanced head and neck carcinomas. Clin. Cancer Res. 1998, 4, 2039–2045. [Google Scholar]
- Evans, W.E.; Relling, M.V.; Rodman, J.H.; Crom, W.R.; Boyett, J.M.; Pui, C.-H. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N. Engl. J. Med. 1998, 338, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Levêque, D.; Becker, G. The role of therapeutic drug monitoring in the management of safety of anticancer agents: A focus on 3 cytotoxics. Expert Opin. Drug Saf. 2019, 18, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Hertz, D.L.; Rae, J. Pharmacogenetics of cancer drugs. Annu. Rev. Med. 2015, 66, 65–81. [Google Scholar] [CrossRef]
- Roncato, R.; Bignucolo, A.; Peruzzi, E.; Montico, M.; De Mattia, E.; Foltran, L.; Guardascione, M.; D’Andrea, M.; Favaretto, A.; Puglisi, F.; et al. Clinical benefits and utility of pretherapeutic DPYD and UGT1A1 testing in gastrointestinal cancer: A secondary analysis of the PREPARE randomized clinical trial. JAMA Netw. Open 2024, 7, e2449441. [Google Scholar] [CrossRef]
- Roddie, C.; Sandhu, K.S.; Tholouli, E.; Logan, A.C.; Shaughnessy, P.; Barba, P.; Ghobadi, A.; Guerreiro, M.; Yallop, D.; Abedi, M.; et al. Obecabtagene autoleucel in adults with B-cell acute lymphoblastic leukemia. N. Engl. J. Med. 2024, 391, 2219–2230. [Google Scholar] [CrossRef]
- Lee, S.H.R.; Yang, W.; Gocho, Y.; John, A.; Rowland, L.; Smart, B.; Williams, H.; Maxwell, D.; Hunt, J.; Yang, W.; et al. Pharmacotypes across the genomic landscape of pediatric acute lymphoblastic leukemia and impact on treatment response. Nat. Med. 2023, 29, 170–179. [Google Scholar] [CrossRef]
- Verdegaal, A.A.; Goodman, A.L. Integrating the gut microbiome and pharmacology. Sci. Transl. Med. 2024, 16, eadg8357. [Google Scholar] [CrossRef]
- Landré, T.; Karaboué, A.; Buchwald, Z.S.; Innominato, P.F.; Qian, D.C.; Assié, J.B.; Chouaïd, C.; Lévi, F.; Duchemann, B. Effect of immunotherapy-infusion time of day on survival of patients with advanced cancers: A study-level meta-analysis. ESMO Open 2024, 9, 102220. [Google Scholar] [CrossRef] [PubMed]
- Innominato, P.F.; Karaboué, A.; Bouchahda, M.; Bjarnason, G.A.; Lévi, F.A. The future of precise cancer chronotherapeutics. Lancet Oncol. 2022, 23, e242. [Google Scholar] [CrossRef]
- Giraud, E.L.; de Lijster, B.; Krens, S.D.; Desar, I.M.E.; Boerrigter, E.; van Erp, N.P. Dose recommendations for anticancer drugs in patients with renal or hepatic impairment: An update. Lancet Oncol. 2023, 24, e229. [Google Scholar] [CrossRef]
- Mathijssen, R.H.; Sparreboom, A.; Verweij, J. Determining the optimal dose in the development of anticancer agents. Nat. Rev. Clin. Oncol. 2014, 11, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Le Tourneau, C.; Lee, J.J.; Siu, L.L. Dose escalation methods in phase I cancer clinical trials. J. Natl. Cancer Inst. 2009, 101, 708–720. [Google Scholar] [CrossRef]
- Jain, R.K.; Lee, J.J.; Hong, D.; Markman, M.; Gong, J.; Naing, A.; Wheler, J.; Kurzrock, R. Phase I oncology studies: Evidence that in the era of targeted therapies patients on lower doses do not fare worse. Clin. Cancer Res. 2010, 16, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Soltantabar, P.; Lon, H.K.; Parivar, K.; Wang, D.D.; Elmeliegy, M. Optimizing benefit/risk in oncology: Review of post-marketing dose optimization and reflections on the road ahead. Crit. Rev. Oncol. Hematol. 2023, 182, 103913. [Google Scholar] [CrossRef]
- Lam, M.; Olivier, T.; Haslam, A.; Tuia, J.; Prasad, V. Cost of drug wastage from dose modification and discontinuation of oral anticancer drugs. JAMA Oncol. 2023, 9, 1238–1244. [Google Scholar] [CrossRef]
- Roda, D.; Jimenez, B.; Banerji, U. Are doses and schedules of small-molecule targeted anticancer drugs recommended by phase I studies realistic? Clin. Cancer Res. 2016, 22, 2127–2132. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.K.; Roszik, J.; Norris, D.C.; Groisberg, R.; Coleman, N.; Alhalabi, O.; Ludmir, E.B.; Taniguchi, C.M.; Subbiah, I.M.; Subbiah, V. Dosing, drug reduction, drug interruption, and drug discontinuation rates among U.S. FDA approved tyrosine kinase inhibitors. J. Clin. Oncol. 2021, 39, 3112. [Google Scholar] [CrossRef]
- Huntington, S.F.; de Nigris, E.; Puckett, J.; Kamal-Bahl, S.; Farooqui, M.; Ryland, K.; Sarpong, E.; Leng, S.; Yang, X.; Doshi, J.A. Ibrutinib discontinuation and associated factors in a real-world national sample of elderly Medicare beneficiaries with chronic lymphocytic leukemia. Leuk. Lymphoma 2023, 64, 2286–2295. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.P.; Kantarjian, H.M.; Kim, D.W.; Réa, D.; Dorlhiac-Llacer, P.E.; Milone, J.H.; Vela-Ojeda, J.; Silver, R.T.; Khoury, H.J.; Charbonnier, A.; et al. Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia. J. Clin. Oncol. 2008, 26, 3204–3212. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; Welch, M.A.; Jabbour, E. Revisiting six established practices in the treatment of chronic myeloid leukaemia. Lancet Haematol. 2023, 10, e860–e864. [Google Scholar] [CrossRef]
- Cortes, J.; Apperley, J.; Lomaia, E.; Moiraghi, B.; Undurraga Sutton, M.; Pavlovsky, C.; Chuah, C.; Sacha, T.; Lipton, J.H.; Schiffer, C.A.; et al. Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia: A randomized, open-label phase 2 clinical trial. Blood 2021, 138, 2042–2050. [Google Scholar] [CrossRef]
- Hanley, M.J.; Diderichsen, P.; Rich, B.; Largajolli, A.; Schindler, E.; Vorog, A.; Venkatakrishnan, K.; Gupta, N. Response-based dosing for ponatinib: Model-based analyses of the dose-ranging OPTIC study. Clin. Pharmacol. Ther. 2023, 114, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Clementino, N.C.D.; Fominykh, M.; Lipton, J.H.; Turkina, A.G.; Moiraghi, E.B.; Nicolini, F.E.; Takahashi, N.; Sacha, T.; Kim, D.W.; et al. Treatment-free remission following frontline nilotinib in patients with chronic phase chronic myeloid leukemia: 5-year update of the ENEST freedom trial. Leukemia 2021, 35, 1631–1642. [Google Scholar] [CrossRef]
- Goto, K.; Goto, Y.; Kubo, T.; Ninomiya, K.; Kim, S.W.; Planchard, D.; Ahn, M.J.; Smit, E.F.; de Langen, A.J.; Pérol, M.; et al. Trastuzumab deruxtecan in patients with HER2-mutant metastatic non-small-cell lung cancer: Primary results from the randomized, phase II DESTINY-Lung02 Trial. J. Clin. Oncol. 2023, 41, 4852–4863. [Google Scholar] [CrossRef] [PubMed]
- Doi, T.; Shitara, K.; Naito, Y.; Shimomura, A.; Fujiwara, Y.; Yonemori, K.; Shimizu, C.; Shimoi, T.; Kuboki, Y.; Matsubara, N.; et al. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody-drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: A phase 1 dose-escalation study. Lancet Oncol. 2017, 18, 1512–1522. [Google Scholar] [CrossRef]
- Modi, S.; Saura, C.; Yamashita, T.; Park, Y.H.; Kim, S.B.; Tamura, K.; Andre, F.; Iwata, H.; Ito, Y.; Tsurutani, J.; et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl. J. Med. 2020, 382, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Kobayashi, Y.; Endo, S.; Fukae, M.; Hennig, S.; Kastrissios, H.; Kamiyama, E.; Garimella, T.; Abutarif, M. Trastuzumab deruxtecan dosing in human epidermal growth factor receptor 2-positive gastric cancer: Population pharmacokinetic modeling and exposure-response analysis. J. Clin. Pharmacol. 2023, 63, 1232–1243. [Google Scholar] [CrossRef]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Patil, V.M.; Noronha, V.; Menon, N.; Rai, R.; Bhattacharjee, A.; Singh, A.; Nawale, K.; Jogdhankar, S.; Tambe, R.; Dhumal, S.; et al. Low-dose immunotherapy in head and neck cancer: A Randomized Study. J. Clin. Oncol. 2023, 41, 222–232. [Google Scholar] [CrossRef]
- Advani, R.H.; Buggy, J.J.; Sharman, J.P.; Smith, S.M.; Boyd, T.E.; Grant, B.; Kolibaba, K.S.; Furman, R.R.; Rodriguez, S.; Chang, B.Y.; et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J. Clin. Oncol. 2013, 31, 88–94. [Google Scholar] [CrossRef]
- Chen, L.S.; Bose, P.; Cruz, N.D.; Jiang, Y.; Wu, Q.; Thompson, P.A.; Feng, S.; Kroll, M.H.; Qiao, W.; Huang, X.; et al. A pilot study of lower doses of ibrutinib in patients with chronic lymphocytic leukemia. Blood 2018, 132, 2249–2259. [Google Scholar] [CrossRef] [PubMed]
- Mato, A.R.; Timlin, C.; Ujjani, C.; Skarbnik, A.; Howlett, C.; Banerjee, R.; Nabhan, C.; Schuster, S.J. Comparable outcomes in chronic lymphocytic leukaemia (CLL) patients treated with reduced-dose ibrutinib: Results from a multi-centre study. Br. J. Haematol. 2018, 181, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Ratain, M.J.; Moslehi, J.J.; Lichter, A.S. Ibrutinib’s cardiotoxicity—An opportunity for postmarketing regulation. JAMA Oncol. 2021, 7, 177–178. [Google Scholar] [CrossRef] [PubMed]
- Ratain, M.J.; Tannock, I.F.; Lichter, A.S. The dosing of ibrutinib and related Bruton’s tyrosine kinase inhibitors: Eliminating the use of brute force. Blood Adv. 2022, 6, 5041–5044. [Google Scholar] [CrossRef]
- Feldman, R.C.; Hyman, D.A.; Price, W.N., 2nd; Ratain, M.J. Negative innovation: When patents are bad for patients. Nat. Biotechnol. 2021, 39, 914–916. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Withdrawn|Cancer Accelerated Approvals. Ibrutinib. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/withdrawn-cancer-accelerated-approvals (accessed on 29 January 2024).
- Nakajima, E.C.; Drezner, N.; Li, X.; Mishra-Kalyani, P.S.; Liu, Y.; Zhao, H.; Bi, Y.; Liu, J.; Rahman, A.; Wearne, E.; et al. FDA approval summary: Sotorasib for KRAS G12C-mutated metastatic NSCLC. Clin. Cancer Res. 2022, 28, 1482–1486. [Google Scholar] [CrossRef]
- Moon, H. FDA initiatives to support dose optimization in oncology drug development: The less may be the better. Trans. Clin. Pharmacol. 2022, 30, 71–74. [Google Scholar] [CrossRef]
- Hochmair, M.J.; Vermaelen, K.; Mountzios, G.; Carcereny, E.; Dooms, C.; Lee, S.H.; Morocz, E.M.; Kato, T.; Ciuleanu, T.E.; Dy, G.; et al. VP4-2023: Sotorasib 960 mg versus 240 mg in pretreated KRAS G12C advanced NSCLC. Ann. Oncol. 2024, 35, 142–144. [Google Scholar] [CrossRef]
- Ratain, M.J.; Kesselheim, A.S. Sotorasib’s accelerated approval: Wrong dose and indication. JAMA Oncol. 2025, 11, 479–480. [Google Scholar] [CrossRef]
- Ranganathan, S.; Prasad, V.; Olivier, T. The fate of sotorasib: A regulatory failure potentially harming patients. Lancet Oncol. 2024, 25, 549–552. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Mehta, B.; Wang, Y.; Waterhouse, D.; de Langen, A.J. Sotorasib versus docetaxel: Evidence supporting CodeBreaK 200. Lancet Oncol. 2024, 25, e334. [Google Scholar] [CrossRef]
- Fakih, M.G.; Salvatore, L.; Esaki, T.; Modest, D.P.; Lopez-Bravo, D.P.; Taieb, J.; Karamouzis, M.V.; Ruiz-Garcia, E.; Kim, T.W.; Kuboki, Y.; et al. Sotorasib plus panitumumab in refractory colorectal cancer with mutated KRAS G12C. N. Engl. J. Med. 2023, 389, 2125–2139. [Google Scholar] [CrossRef]
- HAS. LUMYKRAS (Sotorasib). Available online: https://www.has-sante.fr/jcms/p_3450915/fr/lumykras-sotorasib-cancer-du-poumon (accessed on 26 October 2023).
- Sandhu, S.K.; Schelman, W.R.; Wilding, G.; Moreno, V.; Baird, R.D.; Miranda, S.; Hylands, L.; Riisnaes, R.; Forster, M.; Omlin, A.; et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: A phase 1 dose-escalation trial. Lancet Oncol. 2013, 14, 882–892. [Google Scholar] [CrossRef]
- Berek, J.S.; Matulonis, U.A.; Peen, U.; Ghatage, P.; Mahner, S.; Redondo, A.; Lesoin, A.; Colombo, N.; Vergote, I.; Rosengarten, O.; et al. Safety and dose modification for patients receiving niraparib. Ann. Oncol. 2018, 29, 1784–1792. [Google Scholar] [CrossRef]
- Monk, B.J.; Romero, I.; Graybill, W.; Churruca, C.; O’Malley, D.M.; Knudsen, A.Ø.; Yap, O.W.S.; Baurain, J.F.; Rose, P.G.; Denys, H.; et al. Niraparib population pharmacokinetics and exposure-response relationships in patients with newly diagnosed advanced ovarian cancer. Clin. Ther. 2024, 46, 612–621. [Google Scholar] [CrossRef]
- Monk, B.J.; Barretina-Ginesta, M.P.; Pothuri, B.; Vergote, I.; Graybill, W.; Mirza, M.R.; McCormick, C.C.; Lorusso, D.; Moore, R.G.; Freyer, G.; et al. Niraparib first-line maintenance therapy in patients with newly diagnosed advanced ovarian cancer: Final overall survival results from the PRIMA/ENGOT-OV26/GOG-3012 trial. Ann. Oncol. 2024, 35, 981–992. [Google Scholar] [CrossRef]
- Jakubowiak, A.J. Evolution of carfilzomib dose and schedule in patients with multiple myeloma: A historical overview. Cancer Treat. Rev. 2014, 40, 781–790. [Google Scholar] [CrossRef]
- Moreau, P.; Mateos, M.V.; Berenson, J.R.; Weisel, K.; Lazzaro, A.; Song, K.; Dimopoulos, M.A.; Huang, M.; Zahlten-Kumeli, A.; Stewart, A.K. Once weekly versus twice weekly carfilzomib dosing in patients with relapsed and refractory multiple myeloma (A.R.R.O.W.): Interim analysis results of a randomised, phase 3 study. Lancet Oncol. 2018, 19, 953–964. [Google Scholar] [CrossRef]
- Yago, M.R.; Mehta, K.; Bose, M.; Bhagwat, S.; Chopra, V.S.; Dutta, S.; Upreti, V.V. Mechanistic pharmacokinetic/pharmacodynamic modeling in support of a patient-convenient, longer dosing interval for carfilzomib, a covalent inhibitor of the proteasome. Clin. Pharmacokinet. 2023, 62, 779–788. [Google Scholar] [CrossRef]
- Biran, N.; Siegel, D.; Berdeja, J.G.; Raje, N.; Cornell, R.F.; Alsina, M.; Kovacsovics, T.; Fang, B.; Kimball, A.S.; Landgren, O. Weekly carfilzomib, lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: A phase 1b study. Am. J. Hematol. 2015, 90, E125–E127. [Google Scholar]
- Dimopoulos, M.A.; Coriu, D.; Delimpasi, S.; Špička, I.; Upchurch, T.; Fang, B.; Talpur, R.; Faber, E.; Beksac, M.; Leleu, X. A.R.R.O.W.2: Once- vs. twice-weekly carfilzomib, lenalidomide, and dexamethasone in relapsed/refractory multiple myeloma. Blood Adv. 2024, 8, 5012–5021. [Google Scholar] [CrossRef]
- Cantini, L.; Paoloni, F.; Pecci, F.; Spagnolo, F.; Genova, C.; Tanda, E.T.; Aerts, S.; Rebuzzi, S.E.; Fornarini, G.; Zoratto, F.; et al. Safety of extended interval dosing immune checkpoint inhibitors: A multicenter cohort study. J. Natl. Cancer Inst. 2023, 115, 796–804. [Google Scholar] [CrossRef]
- Ni, L.; Khan, A.Z.; Long, A.; Gao, L.; Toms, N.; Gonzalez-Gugel, E.; Holsmer-Brand, S.; Lin, Y.; Abada, P.; Dickin, S.; et al. Optimizing the dosing regimen of cetuximab and ramucirumab using the model-informed drug development paradigm. Clin. Pharmacol. Ther. 2023, 114, 77–87. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Karlin, L.; Benboubker, L.; Nahi, H.; San-Miguel, J.; Trancucci, D.; Qi, K.; Stephenson, T.; Perales-Puchalt, A.; Chastain, K.; et al. Durability of responses with biweekly dosing of teclistamab in patients with relapsed/refractory multiple myeloma achieving a clinical response in the majesTEC-1 study (abstract 8034). J. Clin. Oncol. 2023, 41, 8034. [Google Scholar] [CrossRef]
- Oudard, S.; Ratta, R.; Voog, E.; Barthelemy, P.; Thiery-Vuillemin, A.; Bennamoun, M.; Hasbini, A.; Aldabbagh, K.; Saldana, C.; Sevin, E.; et al. Biweekly vs. triweekly cabazitaxel in older patients with metastatic castration-resistant prostate cancer: The CABASTY phase 3 randomized clinical trial. JAMA Oncol. 2023, 9, 1629–1638. [Google Scholar] [CrossRef]
- Liao, M.Z.; Lu, D.; Kågedal, M.; Miles, D.; Samineni, D.; Liu, S.N.; Li, C. Model-informed therapeutic dose optimization strategies for antibody-drug conjugates in oncology: What can we learn from US Food and Drug Administration-approved antibody-drug conjugates? Clin. Pharmacol. Ther. 2021, 110, 1216–1230. [Google Scholar] [CrossRef]
- Winn, A.N.; Atallah, E.; Cortes, J.; Deininger, M.W.N.; Kota, V.; Larson, R.A.; Moore, J.O.; Mauro, M.J.; Oehler, V.G.; Pinilla-Ibarz, J.; et al. Estimated savings after stopping tyrosine kinase inhibitor treatment among patients with chronic myeloid leukemia. JAMA Netw. Open 2023, 6, e2347950. [Google Scholar] [CrossRef]
- Heiss, B.; Pan, L.; Akalu, A.; Vallejo, J.; Cheng, J.; Balcazar, P.; Rahman, N.A.; Shifflett Shord, S.; Shah, M.; Pazdur, R.; et al. Dosage optimization in drug development: An FDA Project Optimus analysis of postmarketing requirements Issued to repair the cracks (abstract). J. Clin. Oncol. 2023, 41, 1598. [Google Scholar] [CrossRef]
- Collins, G.; McKelvey, B.; Andrews, H.S.; Allen, J.D.; Stewart, M.D. An analysis of dosing-related postmarketing requirements for novel oncology drugs approved by the U.S. Food and Drug Administration, 2012–2022. Clin. Cancer Res. 2023, 29, 2371–2374. [Google Scholar] [CrossRef]
- Fourie Zirkelbach, J.; Shah, M.; Vallejo, J.; Cheng, J.; Ayyoub, A.; Liu, J.; Hudson, R.; Sridhara, R.; Ison, G.; Amiri-Kordestani, L.; et al. Improving dose-optimization processes used in oncology drug development to minimize toxicity and maximize benefit to patients. J. Clin. Oncol. 2022, 40, 3489–3500. [Google Scholar] [CrossRef]
- Optimizing the Dosage of Human Prescription Drugs and Biological Products for the Treatment of Oncologic Diseases. Draft Guidance for Industry. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/optimizing-dosage-human-prescription-drugs-and-biological-products-treatment-oncologic-diseases (accessed on 4 January 2023).
- Forrest, R.; Lagarde, M.; Aggarwal, A.; Naci, H. Preferences for speed of access versus certainty of the survival benefit of new cancer drugs: A discrete choice experiment. Lancet Oncol. 2024, 25, 1635–1643. [Google Scholar] [CrossRef]
- Erfani, P.; Okediji, R.L.; Mulema, V.; Cliff, E.R.S.; Asante-Shongwe, K.; Bychkovksy, B.L.; Fadelu, T. advancing global pharmacoequity in oncology. JAMA Oncol. 2025, 11, 55–59. [Google Scholar] [CrossRef]
- Levêque, D.; Beck, M.; Cotton, M. Dispensation for access to novel anticancer agents in France. Lancet Oncol. 2023, 24, 719–720. [Google Scholar] [CrossRef]
- van der Kleij, M.B.A.; Guchelaar, N.A.D.; Mathijssen, R.H.J.; Versluis, J.; Huitema, A.D.R.; Koolen, S.L.W.; Steeghs, N. Therapeutic drug monitoring of kinase inhibitors in oncology. Clin. Pharmacokinet. 2023, 62, 1333–1364. [Google Scholar] [CrossRef]
Dosing Strategy | Comments |
---|---|
Adaptation to body size (body weight ou estimated body surface aera) | Mostly used for injectable agents (easy to adjust). Assumed to be more precise and to reduce inter-individual variabilty. Not really scientifically demonstrated. |
Adaptation to pharmacokinetic parameters (therapeutic drug monitoring) | Used for certain agents; pharmacokinetic variabilty linked to clinical issues |
Adaptation to pharmacogenetic characteristics | Used for certain agents; pharmacogenetic characteristics linked to clinical issues (toxicity) |
Fixed dose | Used for convenience issues for oral agents or some monoclonal antibodies given subcutaneously or intravenously |
Drug | Modality | Benefits | Labeling Impact |
---|---|---|---|
Ibrutinib | Reduced dose in chronic lymphocytic leukemia | Less toxicity | no/off-label |
Withdrawal of high dose in mantle cell lymphoma | No exposition to an unapproved indication | yes (US) | |
Dasatinib, ponatinib | Reduced dose in chronic myeloid leukemia | Less toxicity | yes |
Nilotinib | Treatment interruption in responders with chronic myeloid leukemia | Less toxicity; more convenient; less financial burden | yes (US) |
Trastuzumab deruxtecan | Reduced dose in HER2-mutated non-small cell lung cancer | Less toxicity | yes |
Sotorasib | Initial dose confirmed in KRAS G12C non-small cell lung cancer | No demonstrated benefits; potentially mor toxic | yes |
Niraparib | Reduced dose in maintenance treatment of ovarian cancer according to the body weight | Less toxicity | yes |
Carfilzomib | Reduced frequency of administration in myeloma | More convenient | yes |
Nivolumab | Reduced dose in head and neck cancer | Less financial burden | no (off-label) |
Extended frequency of administration | More convenient | yes | |
Pembrolizumab | Extended frequency of administration | More convenient | yes |
Cetuximab | Extended frequency of administration | More convenient | no (off-label) |
Teclistamab | Extended frequency of administration in responders with chronic lymphocytic leukemia | More convenient | yes (US) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levêque, D. Improving the Dosing Schedules of Targeted Anticancer Agents. Pharmaceuticals 2025, 18, 848. https://doi.org/10.3390/ph18060848
Levêque D. Improving the Dosing Schedules of Targeted Anticancer Agents. Pharmaceuticals. 2025; 18(6):848. https://doi.org/10.3390/ph18060848
Chicago/Turabian StyleLevêque, Dominique. 2025. "Improving the Dosing Schedules of Targeted Anticancer Agents" Pharmaceuticals 18, no. 6: 848. https://doi.org/10.3390/ph18060848
APA StyleLevêque, D. (2025). Improving the Dosing Schedules of Targeted Anticancer Agents. Pharmaceuticals, 18(6), 848. https://doi.org/10.3390/ph18060848