Evaluation of Cholinesterase Activities During in Vivo Intoxication Using an Electrochemical Sensor Strip – Correlation With Intoxication Symptoms
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mortality and symptoms
2.1. Cholinesterase activity
3. Experimental Section
3.1. Animals
3.2. Animal intoxication
3.3. Blood processing and amperometric evaluation of enzyme activity
3.4. Cyclic voltammetry
4. Conclusions
Acknowledgments
References and Notes
- Soreq, H.; Seidman, S. Acetylcholinesterase – new rolew for an old actor. Nat. Rev. Neurosci. 2001, 2, 294–302. [Google Scholar]
- Pohanka, M.; Jun, D.; Kuca, K. Improvement of acetylcholinesterase-based assay for organophosphates in way of identification by reactivators. Talanta 2008, 77, 451–454. [Google Scholar]
- Balali-Mood, M.; Balali-Mood, K. Neurotoxic disorders of organophosphorus compounds and their managements. Arch. Iran. Med. 2008, 11, 65–89. [Google Scholar]
- Eddieston, M.; Buckley, N.A.; Eyer, P.; Dawson, A.H. Medical management of acute organophosphorus pesticide self-poisoning. Lancet 2008, 37, 597–607. [Google Scholar]
- Baydin, A.; Aygun, D.; Yazici, M.; Karatas, A.; Deniz, T.; Yardan, T. Is there a relationship between th blood cholinesterase and QTc interval in the patients with acute organophosphate poisoning? Int. J. Clin. Pract. 2007, 61, 927–930. [Google Scholar]
- Ellman, G.L.; Courtney, D.K.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar]
- Sinko, G.; Calic, M.; Bosak, A.; Kovarik, Z. Limitation of the Ellman method: cholinesterase activity measured in the presence of oximes. Anal. Biochem. 2007, 370, 223–227. [Google Scholar]
- Adam, V.; Mikelova, R.; Hubalek, J.; Hanustiak, P.; Beklova, M.; Hodek, P.; Horna, A.; Trnkova, L.; Stiborova, M.; Zeman, L.; Kizek, R. Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors 2007, 7, 2402–2418. [Google Scholar]
- Krizkova, S.; Beklova, M.; Pikula, J.; Adam, V.; Horna, A.; Kizek, R. Hazards of secondary bromadiolone intoxications evaluated using high-performance liquid chromatography with electrochemical detection. Sensors 2007, 7, 1271–1286. [Google Scholar]
- Supalkova, V.; Huska, D.; Diopan, V.; Hanustiak, P.; Zika, O.; Stejskal, K.; Baloun, J.; Pikula, J.; Havel, L.; Zehnalek, J.; Adam, V.; Trnkova, L.; Beklova, M.; Kizek, R. Electroanalysis of plant thiols. Sensors 2007, 7, 932–952. [Google Scholar]
- Krizkova, S.; Ryant, P.; Krystofova, O.; Adam, V.; Galiova, M.; Beklova, M.; Babula, P.; Kaiser, J.; Novotny, K.; Novotny, J.; Liska, M.; Malina, R.; Zehnalek, J.; Hubalek, J.; Havel, L.; Kizek, R. Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions – plants as bioindicators of environmental pollution. Sensors 2008, 8, 445–463. [Google Scholar]
- Pohanka, M.; Dobes, P.; Drtinova, L.; Kuca, K. Nerve agents assay using cholinesterase based biosensor. Electroanalysis. 2009. In press. [Google Scholar] [CrossRef]
- Pohanka, M.; Jun, D.; Kuca, K. Amperometric biosensor for real time assay of organophosphates. Sensors 2008, 8, 5303–5312. [Google Scholar]
- Pohanka, M.; Kuca, K.; Kassa, J. New performance of biosensor technology for Alzheimer's disease drugs: in vitro comparison of tacrine and 7-methoxytacrine. Neuroendocrinol. Lett. 2008, 29, 755–758. [Google Scholar]
- Pohanka, M.; Jun, D.; Kalasz, H.; Kuca, K. Cholinesterase biosensor construction – a review. Prot. Pept. Lett. 2008, 15, 795–798. [Google Scholar]
- Pohanka, M.; Kuca, K.; Jun, D. Sensor system based on acetylcholinesterase in homogenous phase for analysis of paraoxon. Anal. Lett. 2008, 41, 2214–2223. [Google Scholar]
- Pohanka, M.; Hrabinova, M.; Kuca, K. Diagnosis of intoxication by the organophosphate Vx: comparison between an electrochemical sensor and Ellman's photometric method. Sensors 2008, 8, 5229–5237. [Google Scholar]
- Bajgar, J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004, 38, 151–216. [Google Scholar]
- Bajgar, J.; Michalek, H.; Bisso, G.M. Differential reactivation by HI-6 in vivo of paraoxon-inhibited rat brain acetylcholinesterase molecular forms. Neurochem. Int. 1995, 26, 347–350. [Google Scholar]
- Masson, P.; Goasdoue, J.L. Evidence that the conformational stability of aged organophosphate-inhibited cholinesterase is altered. Biochim. Biophys. Acta. 1986, 869, 304–313. [Google Scholar]
- Curtil, C.; Masson, P. Aging of cholinesterase after inhibition by organophosphates. Ann. Pharm. Fr. 1993, 51, 63–77. [Google Scholar]
- Saleh, A.M.; Vijayasarathy, C.; Fernandez-Cabezudo, M.; Taleb, M.; Petroianu, G. Influence of paraoxon (POX) and parathion (PAT) on apoptosis: a possible mechanism for toxicity in low-dose exposure. J. Appl. Toxicol. 2003, 23, 23–39. [Google Scholar]
- Levy-Khademi, F.; Tenenbaum, A.N.; Wexler, I.D.; Amitai, Y. Unintentional organophosphate intoxication in children. Pediatr. Emerg. Care 2007, 23, 716–718. [Google Scholar]
- Pohanka, M.; Zdarova-Karasova, J.; Musilek, K.; Kuca, K.; Kassa, J. Effect of five acetylcholinesterase reactivators on tabun intoxicated rats: induction of oxidative stress versus reactivation efficacy. J. Appl. Toxicol. 2009. [Google Scholar] [CrossRef]
- Millard, CB.; Broomfield, C.A. Anticholinesterases: medical applications of neurochemical principles. J. Neurochem. 1995, 64, 1909–1918. [Google Scholar]
- El-Naggar, A.E.; Abdalla, M.S.; El-Sebaey, A.S.; Badawy, S.M. Clinical findings and cholinesterase levels in childrenof organophosphates and carbamates poisoning. Eur. J. Pediatr. 2008. In press. [Google Scholar]
- Pollak, Y.; Gilboa, A.; Ben-Menachem, O.; Ben-Hur, T.; Soreq, H.; Yirmiya, R. Acetylcholinesterase inhibitors reduce brain and blood interleukin-1beta production. Ann. Neurol. 2005, 57, 741–745. [Google Scholar]
- Nezhinskaia, G.I.; Vladykin, A.L.; Sapronov, N.S. Modulation of the cholinergic system during inflammation. Eksp. Klin. Farmakol. 2008, 71, 65–69. [Google Scholar]
- Fang, L.; Kraus, B.; Lehmann, J.; Heilmann, J.; Zhang, Y.; Decker, M. Design and synthesis of tacrine-ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg. Med. Chem. Lett. 2008, 18, 2905–2909. [Google Scholar]
- Pohanka, M.; Jun, D.; Kuca, K. Photometric microplates assay for estimation of paraoxon inhibited acetylcholinesterase reactivation efficacy. J. Enz. Inhib. Med. Chem. 2008, 23, 781–784. [Google Scholar]
- Okuno, S.; Sakurada, K.; Ohta, H.; Ikegaya, H.; Kazui, Y.; Akutsu, T.; Takatori, T.; Iwadate, K. Blood-brain barrier penetration of novel pyridinealdoxime methiodide (PAM) type oxime examined by brain microdialysis with LC-MS/MS. Toxicol. Appl. Pharmacol. 2008, 227, 8–15. [Google Scholar]
- Chevion, S.; Roberts, M.A.; Chevion, M. The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radic. Biol. Med. 2000, 28, 860–870. [Google Scholar]
- Psotova, J.; Zahálková, J.; Hrbac, J.; Simanek, V.; Bartek, J. Determination of total antioxidant capacity in plasma by cyclic voltammetry. Two case reports. Biomed. Papers 2001, 145, 81–83. [Google Scholar]
- Pohanka, M.; Stetina, R. Shift of oxidants and antioxidants levels in rats as a reaction to exposure to sulfur mustard. J. Appl. Toxicol. 2009. In press. [Google Scholar]
- Bernik, T.R.; Friedman, S.G.; Ochani, M.; DiRaimo, R.; Ulloa, L.; Yang, H.; Sudan, S.; Czura, C.J.; Ivanova, S.M.; Tracey, K.J. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J. Exp. Med. 2002, 195, 781–788. [Google Scholar]
- Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000, 405, 468–462. [Google Scholar]
- Brimjon, S.; Gao, Y.; Anker, J.J.; Gliddon, L.A.; LaFleur, D.; Shah, R.; Zhao, Q.; Singh, M.; Carroll, M.E. A cocaine hydrolase engineered from human butyrylcholinesterae selectively blocks cocaine toxicity and reinstatement of drug seeking in rats. Neuropsychopharmacology 2008, 33, 2715–2725. [Google Scholar]
Dose (nmol/kg b.wt.) | Mortality (%) | Symptoms |
---|---|---|
0 | 0 | No |
65 | 0 | No |
125 | 0 | No |
170 | 0 | Slight tonic-clonic seizures after 10 minutes, only in quarter of the cohort |
250 | 50 | Tonic-clonic seizures at the whole cohort after 10 minutes. Mortality seen 20 minutes after administration of paraoxon in a quarter of the cohort. |
500 | 100 | Tonic-clonic seizures within 5 minutes after administration. Mortality of the whole cohort within 10 minutes. |
Dose (nmol/kg b.wt.) | activity (μkat/l) | I(%) |
---|---|---|
0 | 656 ± 105 | / |
65 | 343 ± 24 | 47.7±4.1 |
125 | 309 ± 70 | 52.9±11.6 |
170 | 90 ± 11 | 86.3±2.1 |
250 | 62 ± 49 | 90.5±5.4 |
500 | 34 ± 25 | 94.8±2.9 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pohanka, M.; Novotný, L.; Misík, J.; Kuca, K.; Zdarova-Karasova, J.; Hrabinova, M. Evaluation of Cholinesterase Activities During in Vivo Intoxication Using an Electrochemical Sensor Strip – Correlation With Intoxication Symptoms. Sensors 2009, 9, 3627-3634. https://doi.org/10.3390/s90503627
Pohanka M, Novotný L, Misík J, Kuca K, Zdarova-Karasova J, Hrabinova M. Evaluation of Cholinesterase Activities During in Vivo Intoxication Using an Electrochemical Sensor Strip – Correlation With Intoxication Symptoms. Sensors. 2009; 9(5):3627-3634. https://doi.org/10.3390/s90503627
Chicago/Turabian StylePohanka, Miroslav, Ladislav Novotný, Jan Misík, Kamil Kuca, Jana Zdarova-Karasova, and Martina Hrabinova. 2009. "Evaluation of Cholinesterase Activities During in Vivo Intoxication Using an Electrochemical Sensor Strip – Correlation With Intoxication Symptoms" Sensors 9, no. 5: 3627-3634. https://doi.org/10.3390/s90503627
APA StylePohanka, M., Novotný, L., Misík, J., Kuca, K., Zdarova-Karasova, J., & Hrabinova, M. (2009). Evaluation of Cholinesterase Activities During in Vivo Intoxication Using an Electrochemical Sensor Strip – Correlation With Intoxication Symptoms. Sensors, 9(5), 3627-3634. https://doi.org/10.3390/s90503627