Abstract
Human activity recognition in privacy-sensitive indoor environments requires sensing modalities that remain robust under illumination variation and background clutter while preserving user anonymity. To this end, this study proposes a lightweight radar–camera fusion deep learning model that integrates motion signatures from FMCW radar with coarse spatial cues from ultra-low-resolution camera frames. The radar stream is processed as a Range–Doppler–Time cube, where each frame is flattened and sequentially encoded using a Transformer-based temporal model to capture fine-grained micro-Doppler patterns. The visual stream employs a privacy-preserving -pixel camera input, from which a temporal sequence of difference frames is extracted and modeled with a dedicated camera Transformer encoder. The two modality-specific feature vectors—each representing the temporal dynamics of motion—are concatenated and passed through a lightweight fully connected classifier to predict human activity categories. A multimodal dataset of synchronized radar cubes and ultra-low-resolution camera sequences across 15 activity classes was constructed for evaluation. Experimental results show that the proposed fusion model achieves 98.74% classification accuracy, significantly outperforming single-modality baselines (single-radar and single-camera). Despite its performance, the entire model requires only 11 million floating-point operations (11 MFLOPs), making it highly efficient for deployment on embedded or edge devices.