Analysis of SD-WAN Architectures and Techniques for Efficient Traffic Control Under Transmission Constraints—Overview of Solutions
Abstract
1. Introduction
- (1)
- a comprehensive review of SD-WAN solutions published in recent years, focusing on the architecture, protocols, network monitoring methods, and application of artificial intelligence;
- (2)
- an analysis of these solutions for their suitability in resource-constrained networks, particularly with respect to effective traffic control in these networks.
2. SD-WAN Functional Features and Mechanisms
2.1. Towards SD-WAN
2.2. Traffic Engineering and Control Methods in SD-WAN
2.3. Artificial Intelligence in SD-WAN
2.4. Security
2.5. SD-WAN Mechanisms
2.6. SD-WAN Features Summary
3. SD-WAN Architectures and Techniques—Classification and Analysis in Terms of Ensuring Flexible Traffic Control and Security Under Transmission Constraints
3.1. SD-WAN Commercial Off-the-Shelf Solutions
3.2. Overlay Protocols
Solutions | Year | Protocol |
---|---|---|
Cisco SD-WAN (Viptela) | - | OMP |
VeloCloud | - | DMPO |
Silver Peak | - | EdgeConnect |
Prisma SD-WAN | - | APP-Id |
M. A. Ouamri et al. [3] | 2025 | NETCONF |
X. Hou et al. [53] | 2019 | OpenFlow |
I. Ellawindy et al. [54] | 2021 | OpenFlow |
K. B. Meitei [55] | 2021 | OpenFlow |
I. Z. Bholebawa et al. [61] | 2016 | OpenFlow |
X. Dong et al. [62] | 2017 | Open Flow |
T. Shozi et al. [63] | 2016 | OpenFlow |
S. S. W. Lee et al. [64] | 2020 | OpenFlow |
L. Liuyx et al. [65] | 2020 | OpenFlow |
C. Du et al. [66] | 2021 | OpenFlow |
N. N. Josbert et al. [66] | 2021 | OpenFlow |
S. Troia et al. [68] | 2022 | OpenFlow |
S. I. Hussain et al. [69] | 2023 | NETCONF |
S. A. I. Hussein et al. [70] | 2022 | PCEP |
3.3. Tunneling Mechanisms
Solution | Year | IPsec | GRE | DMVPN | L2TP | WireGuard | SSL TLS | IPIP | VXLAN |
---|---|---|---|---|---|---|---|---|---|
Cisco SD-WAN (Viptela) | - | + | + | ||||||
Fortinet Secure SD-WAN | - | + | + | + | + | ||||
VeloCloud | - | + | + | ||||||
Silver Peak | - | + | + | ||||||
Prisma SD-WAN | - | + | + | ||||||
P. M. Kalaivaanan et al. [15] | 2020 | + | |||||||
T. Shozi et al. [63] | 2016 | + | + | + | |||||
L. Liuyx et al. [64] | 2020 | + | |||||||
C. Du et al. [65] | 2021 | + | |||||||
N. N. Josbert et al. [67] | 2021 | ||||||||
S. Troia et al. [68] | 2022 | ||||||||
S. I. Hussain et al. [69] | 2023 | ||||||||
G. Wang et al. [71] | 2018 | + | |||||||
K. Yang et al. [72] | 2019 | + | + | ||||||
V. L. Sinaga et al. [73] | 2021 | + | |||||||
B. Nugraha et al. [74] | 2024 | + | + | ||||||
Z. Nazemi Absardi et al. [75] | 2024 | + | |||||||
R. Roux et al. [76] | 2023 | + | |||||||
M. Zouinia et al. [77] | 2022 | + | |||||||
S. Troia et al. [78] | 2023 | + | |||||||
D. A. C. Canales et al. [79] | 2024 | + | |||||||
Donenfeld et al. [81] | 2025 | + | |||||||
G. Sguotti et al. [82] | 2025 | + | |||||||
G. Sguotti et al. [83] | 2025 | + | |||||||
T. Rajore et al. [80] | 2025 | + | + |
3.4. Management Architecture
Solutions | Year | Protocol |
---|---|---|
Cisco SD-WAN (Viptela) | - | Central |
Fortinet Secure SD-WAN | - | Decentralized |
VeloCloud | - | Hybrid |
Silver Peak | - | Central |
Prisma SD-WAN | - | Central |
C. Fu et al. [26] | 2024 | Central |
J. Kim et al. [38] | 2024 | Decentralized |
X. Hou et al. [53] | 2019 | Central |
I. Ellawindy et al. [54] | 2021 | Decentralized |
K. B. Meitei [55] | 2021 | Hybrid |
I. Z. Bholebawa et al. [61] | 2016 | Central |
X. Dong et al. [62] | 2017 | Central |
S. S. W. Lee et al. [64] | 2020 | Central |
L. Liuyx et al. [65] | 2020 | Central |
C. Du et al. [66] | 2021 | Central |
N. N. Josbert et al. [67] | 2021 | Central |
S. Troia et al. [68] | 2022 | Central |
G. Wang et al. [71] | 2018 | Decentralized |
V. L. Sinaga et al. [73] | 2021 | Central |
Z. Nazemi Absardi et al. [75] | 2024 | Hybrid |
M. Zouinia et al. [77] | 2022 | Hybrid |
L. Borgianni et al. [84] | 2024 | Central |
C. Y. Hong et al. [85] | 2018 | Central |
B. Xion et al. [86] | 2019 | Central |
S. Sanagavarapu el al. [87] | 2020 | Central |
R. Yuniarto et al. [88] | 2021 | Central |
V. Cheimaras et al. [89] | 2023 | Central |
A. Navarro et al. [90] | 2023 | Central |
A. Botta et al. [91] | 2024 | Central |
V. Cheimaras et al. [92] | 2024 | Central |
D. Kim et al. [93] | 2017 | Hybrid |
A. Chakraborty et al. [94] | 2022 | Hybrid |
Y. Zhang et al. [95] | 2021 | Decentralized |
F. Altheide et al. [96] | 2024 | Decentralized |
S. C. Narayanan et al. [97] | 2024 | Decentralized |
X. Wang et al. [98] | 2025 | Decentralized |
3.5. SD-WAN Monitoring Metrics
Solutions | Year | Monitoring Metrics |
---|---|---|
Cisco SD-WAN (Viptela) | - | Latency, Jitter, Packet Loss, Bandwidth |
Fortinet Secure SD-WAN | - | Latency, Jitter, Packet Loss, Bandwidth |
VeloCloud | - | Latency, Jitter, Packet Loss, Bandwidth |
Silver Peak | - | Latency, Jitter, Packet Loss, Bandwidth |
Prisma SD-WAN | - | Latency, Jitte, Packet Loss, Bandwidth |
Z. Guo et al. [25] | 2024 | THOR |
A. Van Joshua et al. [33] | 2024 | Bandwidth, BER |
X. Dong et al. [62] | 2017 | Bandwidth |
T. Shozi et al. [63] | 2016 | Latency, Throughput |
S. S. W. Lee et al. [64] | 2020 | Jitter, Bandwidth, Latency |
N. N. Josbert et al. [67] | 2021 | Packet Loss Rate, Packet Violation Rate |
G. Wang et al. [71] | 2018 | Throughput Realization Factor |
R. Roux et al. [76] | 2023 | Jitter |
D. A. C. Canales et al. [79] | 2024 | Total Latency |
G. Salazar-Chacón et al. [99] | 2022 | Bandwidth, Latency |
M. Tanha et al. [100] | 2018 | Latency |
S. Kim et al. [101] | 2020 | Latency, Bandwidth |
S. Troia et al. [102] | 2021 | Throughput, Delay |
M. Rezaee et al. [103] | 2019 | Propagation Latency |
W. X. Cusco-Pérez et al. [104] | 2022 | switch-to-controller inter-controller latency, |
C. Fu et al. [105] | 2024 | Bytes transmitted, Delay and traffic over path |
L. M. Silalahi et al. [106] | 2024 | Packet loss, Latency, jitter |
S. Badotra et al. [107] | 2020 | Throughput, Latency, Packet Loss |
M. Savi et al. [108] | 2020 | Bandwidth |
S. Korsakov et al. [109] | 2019 | QOE |
M. Z. Guo et al. [110] | 2024 | Timeouts, deduplicates reordering throughput |
G. D. Salazar Ch et al. [111] | 2018 | Load Balancing |
K. Yang et al. [112] | 2019 | Load Balancing, Average Request Latency |
C. Scarpitta et al. [113] | 2023 | Packet Delivery, Ratio, Lost Packet |
X. Chen et al. [114] | 2025 | ROSO |
P. Iddalagi et al. [115] | 2025 | THPP/BFD |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Glossary
Acronym/Term | Description |
SD-WAN | A network architecture that uses software-based technologies to manage and control WAN traffic centrally, improving flexibility, cost-efficiency, and performance compared to traditional WANs. |
SDN | A networking paradigm that separates the control plane from the data plane, enabling centralized, programmable network management. |
Overlay network | A virtual network built on top of an existing physical network (underlay), using encapsulation or tunneling protocols to abstract physical connectivity. |
Underlay network | The physical network infrastructure that provides the fundamental transport and connectivity over which overlay networks operate. |
Control plane | The network component responsible for routing decisions, policy enforcement, and management of network flows in SD-WAN. |
Data plane | The network component responsible for forwarding user traffic based on policies defined by the control plane |
Orchestrator | A centralized management component in an SD-WAN architecture that provisions, configures, and monitors all network devices and services, ensuring consistent policy enforcement and network optimization. |
Northbound interface | An interface from the SD-WAN controller/orchestrator toward higher-level applications, management platforms, or orchestration systems, used for reporting, integration, and automation (typically via APIs). |
Southbound interface | An interface from the SD-WAN controller/orchestrator toward network devices (e.g., edge routers, CPEs) used to deliver configurations, policies, and control information. |
Edge devices | A network appliance located at the edge of a site that connects the local network to the SD-WAN fabric. |
SASE | A cloud-delivered framework combining SD-WAN capabilities with network security functions, such as firewall, secure web gateway, and zero-trust network access. |
IPsec | A suite of protocols providing encryption, authentication, and secure tunneling for IP traffic, widely used in SD-WAN for securing data across public networks. |
GRE | A tunneling protocol that encapsulates various network layer protocols into IP packets; often combined with IPsec for security. |
DMVPN | Cisco technology combining mGRE, NHRP, and IPsec to enable dynamic, secure, multipoint connections. |
L2TP | A protocol for tunneling Layer 2 traffic over IP networks, often paired with IPsec for security. |
SSL/TLS | Cryptographic protocols providing secure communication over networks. |
QoS | The overall performance of a network service, including metrics such as bandwidth, latency, jitter, and packet loss. |
QoE | A measure of end-user satisfaction with a network service, influenced by QoS and application performance. |
BER | The percentage of bits that have errors relative to the total number of bits transmitted. |
BFD | A protocol used to detect faults between two forwarding engines connected by a link. |
THPP | A protocol that uses probe traffic to monitor tunnel health, including latency and packet loss measurements. |
MEF 3.0 | A global framework published by the Metro Ethernet Forum defining standards, terminology, and best practices for SD-WAN. |
References
- Tahenni, A.; Merazka, F. SD-WAN over MPLS: A Comprehensive Performance Analysis and Security with Insights into the Future of SD-WAN. arXiv 2023. [Google Scholar] [CrossRef]
- Michel, O.; Keller, E. SDN in Wide-Area Networks: A Survey. In Proceedings of the Fourth International Conference on Software Defined Systems (SDS), Valencia, Spain, 8–11 May 2017. [Google Scholar] [CrossRef]
- Ouamri, M.A.; Alharbi, E.; Singh, D.; Sylia, Z. A Comprehensive Survey on Software-Defined Wide Area Network (SD-WAN): Principles, Opportunities and Future Challenges. J. Supercomput. 2025, 81, 291. [Google Scholar] [CrossRef]
- Hong, C.Y.; Kandula, S.; Mahajan, R.; Zhang, M.; Gill, V.; Nanduri, M.; Wattenhofer, R. Achieving High Utilization with Software-Driven WAN. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, Hong Kong, China, 12–16 August 2013; pp. 15–26. [Google Scholar] [CrossRef]
- Jain, S.; Kumar, A.; Mandal, S.; Ong, J.; Poutievski, L.; Singh, A.; Venkata, S.; Wanderer, J.; Zhou, J.; Zhu, M.; et al. B4: Experience with a Globally-Deployed Software Defined WAN. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 3–14. [Google Scholar] [CrossRef]
- Qasmaoui, Y.; Haqiq, A. Enhanced Solid-Flow: An Enhanced Flow Rules Security Mechanism for SDN. In Proceedings of the 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech), Rabat, Morocco, 24–26 October 2017. [Google Scholar] [CrossRef]
- Duliński, Z.; Stankiewicz, R.; Rzym, G.; Wydrych, P. Dynamic Traffic Management for SD-WAN Inter-Cloud Communication. IEEE J. Sel. Areas Commun. 2020, 38, 1335–1351. [Google Scholar] [CrossRef]
- Karakus, M.; Durresi, A. A Survey: Control Plane Scalability Issues and Approaches in Software-Defined Networking (SDN). Comput. Netw. 2017, 112, 279–293. [Google Scholar] [CrossRef]
- Alsayyed, M.M.; Manickam, S.; Wulandari, E.R.N.; Widia, I.D.M.; Karuppayah, S. A Review of Applicable Technologies, Routing Protocols, Requirements, and Architecture for Disaster Area Networks. IEEE Access 2025, 13, 91129–91147. [Google Scholar] [CrossRef]
- Sguotti, G.; Troia, S.; Maier, G. Mitigating Satellite Link Variability in SD-WAN using Constellation-Aware Edge Routing. In Proceedings of the 25th Anniversary International Conference on Transparent Optical Networks (ICTON), Barcelona, Spain, 6–10 July 2025. [Google Scholar] [CrossRef]
- Ayofe, O.A.; Okafor, K.C.; Longe, O.M.; Alabi, C.A.; Tekanyi, A.M.S.; Usman, A.D.; Musa, M.J.; Abdullahi, Z.M.; Agbon, E.E.; Adikpe, A.O.; et al. SDN-Based Integrated Satellite Terrestrial Cyber–Physical Networks with 5G Resilience Infrastructure: Future Trends and Challenges. Technologies 2024, 12, 263. [Google Scholar] [CrossRef]
- Borgianni, L.; Adami, D.; Giordano, S. Towards 6G: Adaptive and Resilient Network Management for Hybrid Terrestrial-Satellite Systems. In Proceedings of the IEEE Network Operations and Management Symposium (NOMS), Honolulu, HI, USA, 12–16 May 2025. [Google Scholar] [CrossRef]
- Stanescu, D.; Buzducea, A. An Overview of Satellite Link Budget Sensitivity Based on Digital Modulation Schemes in Multi-Orbit Satellite Networks. Appl. Sci. 2025, 15, 3473. [Google Scholar] [CrossRef]
- Höyhtyä, M.; Anttonen, A.; Majanen, M.; Yastrebova-Castillo, A.; Varga, M.; Lodigiani, L.; Corici, M.; Zope, H. Multi-Layered Satellite Communications Systems for Ultra-High Availability and Resilience. Electronics 2024, 13, 1269. [Google Scholar] [CrossRef]
- Muara Sianturi, T.; Ramli, K. A Security Framework for Secure Host-to-Host Environments. J. RESTI (Rekayasa Sist. Teknol. Inf.) 2022, 6, 380–386. [Google Scholar] [CrossRef]
- Quang, P.T.A.; Martin, S.; Leguay, J.; Gong, X.; Huiying, X. Intent-Based Policy Optimization in SD-WAN. In Proceedings of the IEEE International Conference on Communications (ICC), Seoul, Republic of Korea, 16–20 May 2022. [Google Scholar] [CrossRef]
- Kalaivaanan, P.M.; Sali, A.; Abdullah, R.S.A.R.; Yaakob, S.; Singh, M.J.; Al-Saegh, A.M. Measuring Contention and Congestion on Ad-Hoc Multicast Network Towards Satellite on Ka-Band and LiFi Communication Under Tropical Environment Region. IEEE Access 2020, 8, 108942–108951. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, J.; Tan, L.; Tian, C. Joint Optimization on Bandwidth Allocation and Route Selection in QoE-Aware Traffic Engineering. IEEE Access 2018, 7, 3314–3319. [Google Scholar] [CrossRef]
- Qin, Z. SD-WAN for Bandwidth and Delay Improvements on the Internet. SHS Web Conf. 2022, 144, 02004. [Google Scholar] [CrossRef]
- MEF. MEF Leads SD-WAN Service Standardization & Certification: Q&A with Nan Chen. IEEE Commun. Stand. Mag. 2019, 3, 6–7. [Google Scholar]
- Dou, S.; Guo, Z. Path Programmability Recovery under Controller Failures for SD-WANs: Recent Advances and Future Research Challenges. IEEE Commun. Mag. 2024, 62, 100–106. [Google Scholar] [CrossRef]
- Abdulghani, A.M.; Abdullah, A.; Rahiman, A.R.; Abdul Hamid, N.A.W.; Akram, B.O.; Raissouli, H. Navigating the Complexities of Controller Placement in SD-WANs: A Multi-Objective Perspective on Current Trends and Future Challenges. Comput. Syst. Sci. Eng. 2025, 49, 124–147. [Google Scholar] [CrossRef]
- Yang, Z.; Cui, Y.; Li, B.; Liu, Y.; Xu, Y. Software-Defined Wide Area Network (SD-WAN): Architecture, Advances and Opportunities. In Proceedings of the 28th International Conference on Computer Communication and Networks (ICCCN), Valencia, Spain, 29 July–1 August 2019. [Google Scholar] [CrossRef]
- Dou, S.; Qi, L.; Wang, J.; Guo, Z. EPIC: Traffic Engineering-Centric Path Programmability Recovery Under Controller Failures in SD-WANs. IEEE/ACM Trans. Netw. 2024, 32, 4871–4882. [Google Scholar] [CrossRef]
- Guo, Z.; Li, C.; Li, Y.; Dou, S.; Zhang, B.; Wu, W. Maintaining the Network Performance of Software-Defined WANs With Efficient Critical Routing. IEEE Trans. Netw. Serv. Manag. 2024, 21, 2240–2252. [Google Scholar] [CrossRef]
- Fu, C.; Wang, B.; Wang, W. Software-Defined Wide Area Networks (SD-WANs): A Survey. Electronics 2024, 13, 3011. [Google Scholar] [CrossRef]
- Diaz, C.J.M.; Andrade-Arenas, L.; Arellano, J.G.U.; Lengua, M.A.C. Analysis about Benefits of Software-Defined Wide Area Network: A New Alternative for WAN Connectivity. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 757–767. [Google Scholar] [CrossRef]
- Wang, J.; Bewong, M.; Zheng, L. SD-WAN: Hybrid Edge Cloud Network between Multi-site SDDC. Comput. Netw. 2024, 250, 110509. [Google Scholar] [CrossRef]
- Ibrahim, R.; Khider, I.; Edam, S.; Mukhtar, T. Comprehensive Strategies for Enhancing SD-WAN: Integrating Security, Dynamic Routing and Quality of Service Management. IET Netw. 2025, 14, e70007. [Google Scholar] [CrossRef]
- Borgianni, L.; Troia, S.; Adami, D.; Maier, G.; Giordano, S. From MPLS to SD-WAN to Ensure QoS and QoE in Cloud-Based Applications. In Proceedings of the IEEE 9th International Conference on Network Softwarization (NetSoft), Madrid, Spain, 19–23 June 2023. [Google Scholar] [CrossRef]
- Troia, S.; Sapienza, F.; Varé, L.; Maier, G. On Deep Reinforcement Learning for Traffic Engineering in SD-WAN. IEEE J. Sel. Areas Commun. 2020, 38, 2198–2212. [Google Scholar] [CrossRef]
- Borgianni, L.; Giordano, S.; Chafe, C. Democratizing Networked Music Performance with a RL-Based SD-WAN. IEEE Commun. Mag. 2024, 62, 26–32. [Google Scholar] [CrossRef]
- Van Joshua, A.; Medjek, F. A Risk Assessment Analysis to Enhance the Security of OT WAN with SD-WAN. Cybersecur. Priv. 2024, 4, 910–937. [Google Scholar] [CrossRef]
- Luo, S.; Dong, M.; Ota, K.; Wu, J.; Li, J. A Security Assessment Mechanism for Software-Defined Networking-Based Mobile Networks. Sensors 2015, 15, 31843–31858. [Google Scholar] [CrossRef]
- Abie, H. An Overview of Firewall Technologies. Telektronikk 2000, 96, 47–52. [Google Scholar]
- Soon, J.N.P.; Yuen, P.K.; Rania, F.N.; Yi, C.J.; Yip, F.J.; Sern, N.E.; Zulkifli, S.Z.B. Next Generation SD-WAN with IDPS. J. Theor. Appl. Inf. Technol. 2023, 6247–6256. Available online: http://www.jatit.org/volumes/Vol101No15/31Vol101No15.pdf (accessed on 10 August 2025).
- Rania, F.N.; Chan, J.Y.; Ng, E.S.; Fong, J.Y.; Zulkifli, S.Z.B.; Ng, P.S.J. SDWAN with IDPS Efficient Network Solution. In Proceedings of the IEEE 13th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Piscataway, NJ, USA, 20–21 May 2023. [Google Scholar] [CrossRef]
- Kim, J.; Seo, M.; Marin, E.; Lee, S.; Nam, J.; Shin, S. Ambusher: Exploring the Security of Distributed SDN Controllers Through Protocol State Fuzzing. IEEE Trans. Inf. Forensics Secur. 2024, 19, 6264–6279. [Google Scholar] [CrossRef]
- Zhang, P.; He, F.; Zhang, H.; Hu, J.; Huang, X.; Wang, J.; Yin, X.; Zhu, H.; Li, Y. Real-Time Malicious Traffic Detection With Online Isolation Forest Over SD-WAN. IEEE Trans. Inf. Forensics Secur. 2023, 18, 2076–2089. [Google Scholar] [CrossRef]
- Rohyans, A.; Shaikh, A.; Rajaram, C.B.; Klebanov, D.; Kumar, D.; Cornett, C.; Malik, H.; Ghodgaonkar, K.; Arunachalam, M.; Pitaev, N.; et al. Cisco SD-WAN Cloud Scale Architecture. Cisco. 2019. Available online: https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/sd-wan/nb-06-cisco-sd-wan-ebook-cte-en.pdf (accessed on 10 August 2025).
- Palo Alto Networks. Prisma SD-WAN CloudBlades Integration with Prisma Access. 2024. Available online: https://docs.paloaltonetworks.com/content/dam/techdocs/en_US/pdf/prisma-sd-wan/prisma-sd-wan-cloudblades-prisma-access-integrations.pdf (accessed on 10 August 2025).
- VMware. Enterprise WAN Simplicity, Performance and Security with VMware SD-WAN. 2025. Available online: https://www.vmware.com/docs/enterprise-wan-agility,-simplicity,-and-performance-with-sd-wan-solution-overview (accessed on 10 October 2025).
- Hewlett Packard Enterprise. Secure SD-WAN Fabric with HPE Aruba Networking EdgeConnect SD-WAN. 2024. Available online: https://www.hpe.com/psnow/doc/a00109847enw (accessed on 10 August 2025).
- Kent, S.; Seo, K. Security Architecture for the Internet Protocol. RFC 4301, Internet Engineering Task Force (IETF). 2005. Available online: https://www.rfc-editor.org/info/rfc4301 (accessed on 10 August 2025).
- Farinacci, D.; Li, T.; Hanks, S.; Meyer, D.; Traina, P. Generic Routing Encapsulation (GRE). RFC 2784, Internet Engineering Task Force (IETF). 2000. Available online: https://www.rfc-editor.org/info/rfc2784 (accessed on 10 August 2025).
- Dommety, G. Key and Sequence Number Extensions to GRE. RFC 2890, Internet Engineering Task Force (IETF). 2000. Available online: https://www.rfc-editor.org/info/rfc2890 (accessed on 10 August 2025).
- Luciani, J.; Katz, D.; Piscitello, D.; Cole, B.; Doraswamy, N. NBMA Next Hop Resolution Protocol (NHRP). RFC 2332, Internet Engineering Task Force (IETF). 1998. Available online: https://www.rfc-editor.org/info/rfc2332 (accessed on 10 August 2025).
- Townsley, W.; Valencia, A.; Rubens, A.; Pall, G.; Zorn, G.; Palter, B. Layer Two Tunneling Protocol “L2TP”. RFC 2661, Internet Engineering Task Force (IETF). 1999. Available online: https://www.rfc-editor.org/info/rfc2661 (accessed on 10 August 2025).
- Freier, A.; Karlton, P.; Kocher, P. The Secure Sockets Layer (SSL) Protocol Version 3.0. RFC 6101, Internet Engineering Task Force (IETF). 2011. Available online: https://www.rfc-editor.org/info/rfc6101 (accessed on 10 August 2025).
- Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, Internet Engineering Task Force (IETF). 2018. Available online: https://www.rfc-editor.org/info/rfc8446 (accessed on 10 August 2025).
- Perkins, D.B. IP Encapsulation within IP. RFC 2003, Internet Engineering Task Force (IETF). 1996. Available online: https://www.rfc-editor.org/info/rfc2003 (accessed on 10 August 2025).
- Mahalingam, M.; Dutt, D.; Duda, K.; Agarwal, P.; Kreeger, L.; Sridhar, T.; Bursell, M.; Wright, C. Virtual eXtensible Local Area Network (VXLAN). RFC 7348, Internet Engineering Task Force (IETF). 2014. Available online: https://www.rfc-editor.org/info/rfc7348 (accessed on 10 August 2025).
- Hou, X.; Muqing, W.; Bo, L.; Yifeng, L. Multi-Controller Deployment Algorithm in Hierarchical Architecture for SDWAN. IEEE Access 2019, 7, 65839–65851. [Google Scholar] [CrossRef]
- Ellawindy, I.; Heydari, S.S. Crowdsourcing Framework for QoE-Aware SD-WAN. Future Internet 2021, 13, 209. [Google Scholar] [CrossRef]
- Meitei, K.B.; Singh, T.R.; Meetei, K.P. Optimal Bandwidth Allocation and Software-Defined Network Aggregation for Heterogeneous Mobile Network. Turk. J. Comput. Math. Educ. 2021, 12, 4262–4273. [Google Scholar] [CrossRef]
- Cisco. Cisco SD-WAN and Cisco Umbrella Simplified. 2019. Available online: https://www.connection.com/media/yrmg3dso/cisco-sd-wan-and-umbrella.pdf (accessed on 10 August 2025).
- Fortinet. Fortinet Secure SD-WAN. 2024. Available online: https://www.fortinet.com/content/dam/fortinet/assets/data-sheets/fortinet_secure_sdwan.pdf (accessed on 10 August 2025).
- Palo Alto Networks. Prisma SD-WAN Instant-On Network Device Specifications. 2024. Available online: https://www.paloaltonetworks.com/apps/pan/public/downloadResource?pagePath=/content/pan/en_US/resources/datasheets/prisma-sd-wan-instant-on-network-ion-device-specifications (accessed on 10 August 2025).
- Hewlett Packard Enterprise. Enterprise: Aruba EdgeConnect SD-WAN Edge Platform. 2024. Available online: https://www.hpe.com/psnow/doc/a00126773enw (accessed on 10 August 2025).
- Broadcom. VMware VeloCloud SD-WAN Administration Guide. 2024. Available online: https://techdocs.broadcom.com/content/dam/broadcom/techdocs/us/en/dita/sde/velocloud-sase/velocloud-legacy-pdfs/user-guides-legacy/VMware-SD-WAN-Administration-Guide_3.4.pdf (accessed on 10 October 2025).
- Bholebawa, I.Z.; Dalal, U.D. Design and Performance Analysis of OpenFlow-Enabled Network Topologies Using Mininet. Int. J. Comput. Commun. Eng. 2016, 5, 419–429. [Google Scholar] [CrossRef]
- Dong, X.; Guo, Z.; Zhou, X.; Qi, H.; Li, K. AJSR: An Efficient Multiple Jumps Forwarding Scheme in Software-Defined WAN. IEEE Access 2017, 5, 3139–3148. [Google Scholar] [CrossRef]
- Shozi, T.; Dlamini, S.; Mudali, P.; Adigun, M.O. An SDN Solution for Performance Improvement in Dedicated Wide-Area Networks. In Proceedings of the Conference on Information Communications Technology and Society (ICTAS), Durban, South Africa, 6–8 March 2019. [Google Scholar] [CrossRef]
- Lee, S.S.W.; Chan, K.Y.; Chen, T.Y. Design and Implementation of an SD-WAN VPN System to Support Multipath and Multi-WAN-Hop Routing in the Public Internet. TechRxiv 2020. [Google Scholar] [CrossRef]
- Liuyx, L.; Chenz, L.; Xux, H.; Shao, H. Automated Traffic Engineering in SDWAN: Beyond Reinforcement Learning. In Proceedings of the IEEE INFOCOM 2020 Workshops, Toronto, ON, Canada, 6–9 July 2020. [Google Scholar] [CrossRef]
- Du, C.; Xiao, J.; Guo, W. Bandwidth Constrained Client Selection and Scheduling for Federated Learning over SD-WAN. IET Commun. 2022, 16, 187–194. [Google Scholar] [CrossRef]
- Nkerabahizi Josbert, N.; Ping, W.; Wei, M.; Muthanna, M.S.A.; Rafiq, A. A Framework for Managing Dynamic Routing in Industrial Networks Driven by Software-Defined Networking Technology. IEEE Access 2021, 9, 74343–74359. [Google Scholar] [CrossRef]
- Troia, S.; Mazzara, M.; Savi, M.; Moreira Zorello, L.M. Resilience of Delay-Sensitive Services With Transport-Layer Monitoring in SD-WAN. IEEE Trans. Netw. Serv. Manag. 2022, 19, 2652–2663. [Google Scholar] [CrossRef]
- Hussein, S.A.I.; Zaki, F.W.; Ashour, M.M. Performance Evaluation of Software-Defined Wide Area Network Based on Queueing Theory. IET Netw. 2022, 11, 128–145. [Google Scholar] [CrossRef]
- Imran Hussain, S.; Yuvanesh, S.; Yokesh, S. Revolutionizing Networking: An Exploration of Software-Defined Networking. In Proceedings of the 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai, India, 11–13 December 2023. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, Y.; Huang, J.; Wu, Y. An Effective Approach to Controller Placement in Software Defined Wide Area Networks. IEEE Trans. Netw. Serv. Manag. 2018, 15, 344–355. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, B.; Guo, D.; Lin, M.; de Cola, T. Partitioned Controller Placement in SDWANs for Reliability Maximization with Latency Constraints. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Big Island, HI, USA, 9–13 December 2019. [Google Scholar] [CrossRef]
- Sinaga, V.L.; Sari, R.F. Optimization of Multi-Controller Locations in SDWAN Using Various Method. In Proceedings of the 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Semarang, Indonesia, 20–21 October 2021. [Google Scholar] [CrossRef]
- Nugraha, B.; Muslim, M.; Khotimah, M.N.; Medriavin, L. Software Define Wide Area Network (SDWAN) Network Optimization Analysis on Radiolink-Fiber Optic Access Media Migration. Int. J. Electron. Telecommun. 2024, 70, 960–977. [Google Scholar] [CrossRef]
- Nazemi Absardi, Z.; Javidan, R. A Predictive SD-WAN Traffic Management Method for IoT Networks in Multi-Datacenters Using Deep RNN. IET Commun. 2024, 18, 1151–1165. [Google Scholar] [CrossRef]
- Roux, R.; Olwal, T.O.; Chowdhury, D.S.P. Software Defined Networking Architecture for Energy Transaction in Smart Microgrid Systems. Energies 2023, 16, 5275. [Google Scholar] [CrossRef]
- Zouinia, M.; El Mantara, Z.; Rouboaa, N.; Bensaouda, O.; Outzourhita, A.; Bahnasse, A. Towards a Modern ISGA Institute Infrastructure Based on Fortinet SD-WAN Technology: Recommendations and Best Practices. Procedia Comput. Sci. 2022, 207, 1435–1444. [Google Scholar] [CrossRef]
- Troia, S.; Maier, G.; Bregni, S. Experimental Evaluation of SD-WAN Performance in a Municipal Network Test Bed. In Proceedings of the IEEE Latin-American Conference on Communications (LATINCOM), Panama City, Panama, 15–17 November 2023. [Google Scholar] [CrossRef]
- Canales, D.A.C.; Quiñonez, R.A.S. Implementation of SDWAN Technology over Legacy Networks for the Optimization of Packet Traffic Applying Control of Delay and Traffic Analyzer (CDTA). In Proceedings of the 22nd LACCEI International Multi-Conference for Engineering, Education and Technology (LACCEI), San Jose, Costa Rica, 17–19 July 2024. [Google Scholar] [CrossRef]
- Rajore, T.; Jithin, S.; Gupta, A.; Gambhir, K.; Prithvi, A.; Chakravarty, S. VPN or Vpwn? How Afraid Should You Be of VPN Traffic Identification? In Proceedings of the 20th International Conference on Network and Service Management (CNSM), Bologna, Italy, 27–31 October 2025; pp. 249–257. [Google Scholar] [CrossRef]
- Donenfeld, J.A. WireGuard: Next Generation Kernel Network Tunnel. Available online: https://www.wireguard.com/papers/wireguard.pdf (accessed on 10 August 2025).
- Sguotti, G.; Troia, S.; Grieco, M.; Maier, G. An Open Source SD-WAN CPE with Fast Packet Processing and Secure Connectivity. In Proceedings of the IEEE International Conference on High Performance Switching and Routing (HPSR), Osaka, Japan, 20–25 May 2025; pp. 1–8. [Google Scholar] [CrossRef]
- Sguotti, G.; Troia, S.; Maier, G. Towards an Intelligent and Satellite-Integrated SD-WAN: A High-Performance and Availability-Aware Approach. In Proceedings of the 11th IEEE International Conference on Network Softwarization (NetSoft), Budapest, Hungary, 23–27 June 2025; pp. 429–432. [Google Scholar] [CrossRef]
- Borgianni, L.; Adami, D.; Giordano, S.; Pagano, M. Enhancing Reliability in Rural Networks Using a Software-Defined Wide Area Network. Computers 2024, 13, 113. [Google Scholar] [CrossRef]
- Hong, C.Y.; Mandal, S.; Al-Fares, M.; Zhu, M.; Alimi, R.; Kondapa, N.B.; Bhagat, C.; Jain, S.; Kaimal, J.; Liang, S.; et al. B4 and After: Managing Hierarchy, Partitioning, and Asymmetry for Availability and Scale in Google’s Software-Defined WAN. In Proceedings of the ACM SIGCOMM 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 20–25 August 2018; pp. 74–87. [Google Scholar] [CrossRef]
- Xion, B.; Wu, R.; Zhao, J.; Wang, J. Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined Wide-Area Networks. IEEE Access 2019, 7, 141193–141208. [Google Scholar] [CrossRef]
- Sanagavarapu, S.; Sridhar, S. Dynamic Routing Framework Proposal for SDWAN Using Topology-Based Multitask Learning. In Proceedings of the 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), Jaipur, India, 1–3 December 2020. [Google Scholar] [CrossRef]
- Yuniarto, R.; Sari, R.F. Performance Analysis of Multipath Deployment in Software-Defined Wide Area Network (SDWAN). In Proceedings of the International Conference on Artificial Intelligence and Computer Science Technology (ICAICST), Yogyakarta, Indonesia, 29–30 June 2021. [Google Scholar] [CrossRef]
- Cheimaras, V.; Peladarinos, N.; Monios, N.; Daousis, S.; Papagiakoumos, S.; Papageorgas, P.; Piromalis, D. Emergency Communication System Based on Wireless LPWAN and SD-WAN Technologies: A Hybrid Approach. Signals 2023, 4, 17. [Google Scholar] [CrossRef]
- Navarro, A.; Canonico, R.; Botta, A. Software Defined Wide Area Networks: Current Challenges and Future Perspectives. In Proceedings of the IEEE 9th International Conference on Network Softwarization (NetSoft), Madrid, Spain, 19–23 June 2023. [Google Scholar] [CrossRef]
- Botta, A.; Canonico, R.; Navarro, A.; Stanco, G.; Ventre, G. Adaptive Overlay Selection at the SD-WAN Edges: A Reinforcement Learning Approach with Networked Agents. Comput. Netw. 2024, 243, 110310. [Google Scholar] [CrossRef]
- Cheimaras, V.; Papagiakoumos, S.; Peladarinos, N.; Trigkas, A.; Papageorgas, P.; Piromalis, D.D.; Munteanu, R.A. Low-Cost, Open-Source, Experimental Setup Communication Platform for Emergencies, Based on SD-WAN Technology. Telecom 2024, 5, 18. [Google Scholar] [CrossRef]
- Kim, D.; Kim, Y.H.; Kim, K.H.; Gil, J.M. Cloud-Centric and Logically Isolated Virtual Network Environment Based on Software-Defined Wide Area Network. Sustainability 2017, 9, 2382. [Google Scholar] [CrossRef]
- Chakraborty, A.; Misra, S.; Maiti, J. Mobility-Aware Controller Orchestration in Multi-Tier Service-Oriented Architecture for IoT. IEEE Trans. Veh. Technol. 2022, 71, 1820–1831. [Google Scholar] [CrossRef]
- Zhang, Y.; Tourrilhes, J.; Zhang, Z.L.; Sharma, P. Improving SD-WAN Resilience: From Vertical Handoff to WAN-Aware MPTCP. IEEE Trans. Netw. Serv. Manag. 2021, 18, 347–361. [Google Scholar] [CrossRef]
- Altheide, F.; Buttgereit, S.; Rossberg, M. Increasing Resilience of SD-WAN by Distributing the Control Plane [Extended Version]. IEEE Trans. Netw. Serv. Manag. 2024, 21, 2569–2581. [Google Scholar] [CrossRef]
- Choorkunnu Narayanan, S.; Varghese, V. A Proactive Controller Failure Recovery Mechanism in SD-WAN with Multiple Controllers. Serb. J. Electr. Eng. 2024, 21, 235–247. [Google Scholar] [CrossRef]
- Wang, X.; Liu, M.; Zhang, Y.; Guo, L.; Zhang, X. DDSPQ: Strict-Priority Queue Schedule for Multi-Tiered Service Accommodation in SD-WAN. In Proceedings of the 10th International Conference on Computer and Communication Systems (ICCCS), Wuhan, China, 17–20 April 2025; pp. 732–737. [Google Scholar] [CrossRef]
- Salazar-Chacón, G. Hybrid Networking SDN and SD-WAN: Traditional Network Architectures and Software-Defined Networks Interoperability in Digitization Era. J. Comput. Sci. Technol. 2022, 22, e07. [Google Scholar] [CrossRef]
- Tanha, M.; Sajjadi, D.; Ruby, R.; Pan, J. Capacity-Aware and Delay-Guaranteed Resilient Controller Placement for Software-Defined WANs. IEEE Trans. Netw. Serv. Manag. 2018, 15, 991–1005. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, S.; Narantuya, J.; Lim, H. Secure Collecting, Optimizing, and Deploying of Firewall Rules in Software-Defined Networks. IEEE Access 2020, 8, 15166–15177. [Google Scholar] [CrossRef]
- Troia, S.; Mazzara, M.; Moreira Zorello, L.M.; Maier, G. Performance Evaluation of Overlay Networking for Delay-Sensitive Services in SD-WAN. In Proceedings of the IEEE International Mediterranean Conference on Communications and Networking (MeditCom), Athens, Greece, 7–10 September 2021. [Google Scholar] [CrossRef]
- Rezaee, M.; Moghaddam, H.Y. SDN-Based Quality of Service Networking for Wide Area Measurement System. IEEE Trans. Ind. Inform. 2019, 15, 3018–3028. [Google Scholar] [CrossRef]
- Cusco-Pérez, W.X.; Cabrera-Mejía, J.B.; Lugo-García, J. Analysis of SD-WAN Technologies Used in Ecuador. Cienc. Educ. Artic. Investig. 2022, 8, 870–886. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=8637957 (accessed on 10 October 2025).
- Fu, C.; Wang, B.; Liu, H.; Wang, W. Software-Defined Virtual Private Network for SD-WAN. Electronics 2024, 13, 2674. [Google Scholar] [CrossRef]
- Silalahi, L.M.; Amaada, V.; Budiyanto, S. Implementation of Auto Failover on SD-WAN Technology with BGP Routing Method on Fortigate Routers at XYZ Company. Int. J. Electron. Telecommun. 2024, 70, 123–130. [Google Scholar] [CrossRef]
- Badotra, S.; Panda, S.N. A Survey on Software Defined Wide Area Network. Int. J. Appl. Sci. Eng. 2020, 17, 59–73. [Google Scholar] [CrossRef]
- Savi, M.; Sartori, F.; Melen, R. Rethinking the Design of Wearable Expert Systems: The Role of Network Infrastructures. In Proceedings of the 16th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Thessaloniki, Greece, 12–14 October 2020. [Google Scholar] [CrossRef]
- Korsakov, S.; Sokolov, V. On the Way to SD-WAN Solution. Model. Anal. Inf. Syst. 2019, 26, 203–212. [Google Scholar] [CrossRef]
- Ma, Z.; Guo, M.; Song, M. SSPRDS: A Shared-Storage-Based Hardware Packet Reordering and Deduplication System for Multipath Transmission in Wide Area Networks. Micromachines 2024, 15, 1323. [Google Scholar] [CrossRef]
- Salazar Ch, G.D.; Naranjo, E.F.; Marrone, L. SDN-Ready WAN Networks: Segment Routing in MPLS-Based Environments. In Proceedings of the 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 8–10 November 2018. [Google Scholar] [CrossRef]
- Yang, K.; Guo, D.; Zhang, B.; Zhao, B. Multi-Controller Placement for Load Balancing in SD-WAN. IEEE Access 2019, 7, 167278–167289. [Google Scholar] [CrossRef]
- Scarpitta, C.; Sidoretti, G.; Mayer, A.; Salsano, S.; Abdelsalam, A.; Filsfils, C. High Performance Delay Monitoring for SRv6-Based SD-WANs. IEEE Trans. Netw. Serv. Manag. 2023, 20, 1067–1081. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Jiang, C.; Xu, C.; Yuan, Z.; Muntean, G.-M. Revenue-Oriented Optimal Service Offloading Based on Fog-Cloud Collaboration in SD-WAN Enabled Manufacturing Networks. IEEE Trans. Netw. Sci. Eng. 2025, 12, 1237–1249. [Google Scholar] [CrossRef]
- Iddalagi, P.; Mishra, A. Enhanced Flow Rate-Based Queuing Discipline for Contention Avoidance in SD-WANs. IEEE Open J. Commun. Soc. 2025, 6, 2566–2581. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudczyk, J.; Sergiel, M.; Krygier, J. Analysis of SD-WAN Architectures and Techniques for Efficient Traffic Control Under Transmission Constraints—Overview of Solutions. Sensors 2025, 25, 6317. https://doi.org/10.3390/s25206317
Dudczyk J, Sergiel M, Krygier J. Analysis of SD-WAN Architectures and Techniques for Efficient Traffic Control Under Transmission Constraints—Overview of Solutions. Sensors. 2025; 25(20):6317. https://doi.org/10.3390/s25206317
Chicago/Turabian StyleDudczyk, Janusz, Mateusz Sergiel, and Jaroslaw Krygier. 2025. "Analysis of SD-WAN Architectures and Techniques for Efficient Traffic Control Under Transmission Constraints—Overview of Solutions" Sensors 25, no. 20: 6317. https://doi.org/10.3390/s25206317
APA StyleDudczyk, J., Sergiel, M., & Krygier, J. (2025). Analysis of SD-WAN Architectures and Techniques for Efficient Traffic Control Under Transmission Constraints—Overview of Solutions. Sensors, 25(20), 6317. https://doi.org/10.3390/s25206317