Evaluating Insulin Delivery Systems Using Dynamic Glucose Region Plots and Risk Space Analysis
Abstract
Highlights
- Our results reveal a clinically relevant higher fraction of (RoC, glucose) values in the optimal risk space with AID system A compared to system B.
- The risk of glucose declining from the target range to below target range was lower in persons using AID systems than in persons without an integrated CGM system.
- Risk space analysis of dynamic glucose region plots is a novel strategy that contributes to the real-world evaluation of different systems for insulin delivery.
Abstract
1. Introduction
2. Methods
3. Statistical Analysis
4. Results
5. Discussion
5.1. Heatmaps
5.2. Comparison of Two AID Systems
5.3. AID vs. isCGM
5.4. Impact of Using Sensors with Different Performance
5.5. Limitations and Strengths
5.6. Static vs. Dynamic Risk Evaluation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Considine, E.G.; Sherr, J.L. Real-World Evidence of Automated Insulin Delivery System Use. Diabetes Technol. Ther. 2024, 26 (Suppl. S3), 53–65. [Google Scholar] [CrossRef] [PubMed]
- Limbert, C.; Kowalski, A.J.; Danne, T.P.A. Automated Insulin Delivery: A Milestone on the Road to Insulin Independence in Type 1 Diabetes. Diabetes Care 2024, 47, 918–920. [Google Scholar] [CrossRef] [PubMed]
- Minsky, N.; Shalit, R.; Benedetti, A.; Laron-Hirsh, M.; Cohen, O.; Kurtz, N.; Ro, A.; Grosman, B.; Tirosh, A. Simplified Meal Management in Adults Using an Advanced Hybrid Closed-Loop System. Diabetes Technol. Ther. 2025, 27, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Tornese, G.; Carletti, C.; Giangreco, M.; Nistico, D.; Faleschini, E.; Barbi, E. Carbohydrate Tolerance Threshold for Unannounced Snacks in Children and Adolescents with Type 1 Diabetes Using an Advanced Hybrid Closed-Loop System. Diabetes Care 2022, 45, 1486–1488. [Google Scholar] [CrossRef]
- Sherr, J.L.; Heinemann, L.; Fleming, G.A.; Bergenstal, R.M.; Bruttomesso, D.; Hanaire, H.; Holl, R.W.; Petrie, J.R.; Peters, A.L.; Evans, M. Automated Insulin Delivery: Benefits, Challenges, and Recommendations. A Consensus Report of the Joint Diabetes Technology Working Group of the European Association for the Study of Diabetes and the American Diabetes Association. Diabetes Care 2022, 45, 3058–3074. [Google Scholar] [CrossRef]
- Thomas, A.; Heinemann, L. Algorithms for Automated Insulin Delivery: An Overview. J. Diabetes Sci. Technol. 2022, 16, 1228–1238. [Google Scholar] [CrossRef]
- Cobelli, C.; Kovatchev, B. Developing the UVA/Padova Type 1 Diabetes Simulator: Modeling, Validation, Refinements, and Utility. J. Diabetes Sci. Technol. 2023, 17, 1493–1505. [Google Scholar] [CrossRef]
- Guerra, S.; Sparacino, G.; Facchinetti, A.; Schiavon, M.; Man, C.D.; Cobelli, C. A dynamic risk measure from continuous glucose monitoring data. Diabetes Technol. Ther. 2011, 13, 843–852. [Google Scholar] [CrossRef]
- Eichenlaub, M.; Pleus, S.; Rothenbuhler, M.; Bailey, T.S.; Bally, L.; Brazg, R.; Bruttomesso, D.; Diem, P.; Eriksson Boija, E.; Fokkert, M.; et al. Comparator Data Characteristics and Testing Procedures for the Clinical Performance Evaluation of Continuous Glucose Monitoring Systems. Diabetes Technol. Ther. 2024, 26, 263–275. [Google Scholar] [CrossRef]
- Sparacino, G.; Cobelli, C.; Guerra, S.; Facchinetti, A.; Schiavon, M. Alert System for Hypo and Hyperglycemia Prevention Based on Clinical Risk. U.S. Patent 11,925,484, 13 June 2024. [Google Scholar]
- Sparacino, G.; Zanderigo, F.; Corazza, S.; Maran, A.; Facchinetti, A.; Cobelli, C. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensior time-series. IEEE Trans. Biomed. Eng. 2007, 54, 931–937. [Google Scholar] [CrossRef]
- Humaidi, A.J.; Hasan, S.; Al-Jodah, A.A. Design of second order sliding mode for glucose regulation systems with disturbance. Int. J. Eng. Technol. 2018, 7, 243–247. [Google Scholar] [CrossRef]
- Kralev, J.; Slavov, T. Robust µ-Controller for Automatic Glucose Regulation for Type I Diabetes Mellitus. Mathematics 2023, 11, 3856. [Google Scholar] [CrossRef]
- Montaser, E.; Farhy, L.S.; Kovatchev, B.P. Novel Detection and Progression Markers for Diabetes Based on Continuous Glucose Monitoring Data Dynamics. J. Clin. Endocrinol. Metab. 2024, 110, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Fisker, S.; Christensen, M.; Bach, E.; Bibby, B.M.; Hansen, K.W. Long-Term Performance of Two Systems for Automated Insulin Delivery in Adults with Type 1 Diabetes: An Observational Study. Endocrinol. Diabetes Metab. 2025, 8, e70043. [Google Scholar] [CrossRef]
- Hansen, K.W.; Bibby, B.M. Rebound Hypoglycemia and Hyperglycemia in Type 1 Diabetes. J. Diabetes Sci. Technol. 2024, 18, 1392–1398. [Google Scholar] [CrossRef]
- Eichenlaub, M.; Pleus, S.; Freckmann, G. A Proposal for the Clinical Characterization of Continuous Glucose Monitoring Trend Arrow Accuracy. J. Diabetes Sci. Technol. 2024, 18, 800–807. [Google Scholar] [CrossRef]
- Battelino, T.; Alexander, C.M.; Amiel, S.A.; Arreaza-Rubin, G.; Beck, R.W.; Bergenstal, R.M.; Buckingham, B.A.; Carroll, J.; Ceriello, A.; Chow, E.; et al. Continuous glucose monitoring and metrics for clinical trials: An international consensus statement. Lancet Diabetes Endocrinol. 2023, 11, 42–57. [Google Scholar] [CrossRef]
- Christensen, M.; Norgaard, L.J.; Bohl, M.; Bibby, B.M.; Hansen, K.W. Time with Rapid Change of Glucose. J. Diabetes Sci. Technol. 2024, 18, 795–799. [Google Scholar] [CrossRef]
- Tidemand, K.G.; Laugesen, C.; Ranjan, A.G.; Skovhus, L.B.; Norgaard, K. Frequency of Rebound Hyperglycemia in Adults with Type 1 Diabetes Treated with Different Insulin Delivery Modalities. Diabetes Technol. Ther. 2025, 27, 60–65. [Google Scholar] [CrossRef]
- Singh, R.; Imberg, H.; Ahmadi, S.S.; Hallström, S.; Jendle, J.; Tengmark, B.-O.; Folino, A.; Marie, E.; Lind, M. Effects, Safety, and Treatment Experience of Advanced Hybrid Closed-Loop Systems in Clinical Practice Among Adults Living with Type 1 Diabetes. J. Diabetes Sci. Technol. 2024, 18, 1265–1266. [Google Scholar] [CrossRef]
- Oliver, N.; Reddy, M.; Leelarathna, L. Continuous glucose sensor accuracy: Beyond the headline metric. Lancet Diabetes Endocrinol. 2024, 12, 934–938. [Google Scholar] [CrossRef]
- Freckmann, G.; Pleus, S.; Eichenlaub, M.; Eriksson Boija, E.; Fokkert, M.; Hinzmann, R.; Jendle, J.; Klonoff, D.C.; Makris, K.; Nichols, J.H.; et al. Recommendations on the Collection of Comparator Measurement Data in the Performance Evaluation of Continuous Glucose Monitoring Systems. J. Diabetes Sci. Technol. 2025, 19, 1072–1081. [Google Scholar] [CrossRef]
- Eichenlaub, M.; Waldenmaier, D.; Wehrstedt, S.; Pleus, S.; Link, M.; Jendrike, N.; Öter, S.; Haug, C.; Schinz, M.; Braunack-Mayer, V.; et al. Performance of Three Continuous Glucose Monitoring Systems in Adults with Type 1 Diabetes. J. Diabetes Sci. Technol. 2025, 19322968251315459. [Google Scholar] [CrossRef] [PubMed]
- Freckmann, G.; Wehrstedt, S.; Eichenlaub, M.; Pleus, S.; Link, M.; Jendrike, N.; Öter, S.; Brandt, D.; Haug, C.; Waldenmaier, D. A Comparative Analysis of Glycemic Metrics Derived from Three Continuous Glucose Monitoring Systems. Diabetes Care 2025, 48, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.W. How to compare algorithms for automated insulin delivery using different sensors? Diabetes Obes. Metab. 2025, 27, 2319–2321. [Google Scholar] [CrossRef] [PubMed]
- Freckmann, G.; Waldenmaier, D.; Heinemann, L. Head-to-Head Evaluation of Continuous Glucose Monitoring and Automated Insulin Delivery Systems: Why are They not Used More Systematically? J. Diabetes Sci. Technol. 2024, 18, 535–540. [Google Scholar] [CrossRef]
- Rahaghi, F.N.; Gough, D.A. Blood glucose dynamics. Diabetes Technol. Ther. 2008, 10, 81–94. [Google Scholar] [CrossRef]
- Kovatchev, B.P.; Gonder-Frederick, L.A.; Cox, D.J.; Clarke, W.L. Evaluating the accuracy of continuous glucose-monitoring sensors: Continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator data. Diabetes Care 2004, 27, 1922–1928. [Google Scholar] [CrossRef]
- Zanderigo, F.; Sparacino, G.; Kovatchev, B.; Cobelli, C. Glucose Prediction Algorithms from Continuous Monitoring Data: Assessment of Accuracy via Continuous Glucose Error-Grid Analysis. J. Diabetes Sci. Technol. 2007, 1, 645–651. [Google Scholar] [CrossRef]
MM780G (n = 65 Persons 351,591 RoC, Glucose Values) | CoIQ (n = 83 Persons 461,943 RoC, Glucose Values) | Mean Risk Difference (95% CI) | p-Value | |
---|---|---|---|---|
Above target range (ATR) (%) | 24.6 | 29.6 | −5.0 (−8.9–−1.2) | 0.011 |
In target range (ITR) (%) | 73.9 | 68.8 | 5.0 (1.3–8.8) | 0.009 |
Below target range (BTR) (%) | 1.5 | 1.5 | 0.0 (−0.5–0.5) | 0.98 |
Risk space A (%) | 6.9 | 7.23 | −0.3 (−0.7–0.1) | 0.14 |
Risk space B (%) | 3.7 | 4.5 | −0.8 (−1.3–−0.3) | 0.0013 |
Risk space C (%) | 4.5 | 4.8 | −0.3 (−0.9–0.3) | 0.36 |
Risk space D (%) | 1.2 | 1.2 | −0.0 (−0.4–0.3) | 0.94 |
Risk space E (%) | 0.4 | 0.3 | 0.0 (−0.1–0.1) | 0.75 |
Risk space O (%) | 62.5 | 56.8 | 5.7 (2.2–9.2) | 0.002 |
A/ITR (%) | 9.4 | 10.5 | −1.1 (−1.8–−0.5) | <0.001 |
B/ATR (%) | 14.9 | 15.1 | −0.1 (−1.0–0.7) | 0.74 |
C/ITR (%) | 6.0 | 6.9 | −0.9 (−1.7–−0.0) | 0.04 |
D/BTR (%) | 76.7 | 77.9 | −1.2 (−3.1–0.8) | 0.24 |
E/BTR (%) | 23.3 | 22.1 | −1.2 (−0.8–3.1) | 0.24 |
O/ITR (%) | 84.6 | 82.6 | 2.0 (0.8–3.2) | 0.002 |
AID Pumps (148 Persons, 813,534 RoC, Glucose Values) | isCGM (148 Persons, 1,189,627 RoC, Glucose Values) | Mean Risk Difference (95%CI) | p-Value | |
---|---|---|---|---|
Above target range (ATR) (%) | 27.4 | 41.3 | −13.9 (−17.2–−10.6) | <0.0001 |
In target range (ITR) (%) | 71.0 | 53.3 | 17.8 (14.7–20.9) | <0.0001 |
Below target range (BTR) (%) | 1.5 | 5.4 | −3.9 (−4.6–−3.1) | <0.0001 |
Risk space A (%) | 7.0 | 5.4 | 1.6 (1.3–1.9) | <0.0001 |
Risk space B (%) | 4.1 | 4.1 | −0.02 (−0.3–0.3) | 0.91 |
Risk space C (%) | 4.6 | 4.3 | 0.3 (−0.1–0.8) | 0.14 |
Risk space D (%) | 1.2 | 4.2 | −3.0 (−3.6–−2.4) | <0.0001 |
Risk space E (%) | 0.3 | 1.2 | −0.9 (−1.1–−0.7) | <0.0001 |
Risk space O (%) | 59.4 | 43.6 | 15.8 (13.0–18.6) | <0.0001 |
A/ITR (%) | 9.9 | 10.2 | −0.3 (−0.8–0.2) | <0.0001 |
B/ATR (%) | 15.0 | 10.0 | 5.0 (4.3–5.7) | <0.0001 |
C/ITR (%) | 6.5 | 8.0 | −1.5 (−2.2–−0.9) | <0.0001 |
D/BTR (%) | 78.5 | 77.4 | 1.0 (−0.2–2.3) | 0.10 |
E/BTR (%) | 21.5 | 22.6 | −1.0 (−2.3–0.2) | 0.10 |
O/ITR (%) | 83.6 | 81.8 | 1.8 (0.9–2.7) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, K.W.; Christensen, M.; Fisker, S.; Bach, E.; Bibby, B.M. Evaluating Insulin Delivery Systems Using Dynamic Glucose Region Plots and Risk Space Analysis. Sensors 2025, 25, 4788. https://doi.org/10.3390/s25154788
Hansen KW, Christensen M, Fisker S, Bach E, Bibby BM. Evaluating Insulin Delivery Systems Using Dynamic Glucose Region Plots and Risk Space Analysis. Sensors. 2025; 25(15):4788. https://doi.org/10.3390/s25154788
Chicago/Turabian StyleHansen, Klavs W., Mia Christensen, Sanne Fisker, Ermina Bach, and Bo M. Bibby. 2025. "Evaluating Insulin Delivery Systems Using Dynamic Glucose Region Plots and Risk Space Analysis" Sensors 25, no. 15: 4788. https://doi.org/10.3390/s25154788
APA StyleHansen, K. W., Christensen, M., Fisker, S., Bach, E., & Bibby, B. M. (2025). Evaluating Insulin Delivery Systems Using Dynamic Glucose Region Plots and Risk Space Analysis. Sensors, 25(15), 4788. https://doi.org/10.3390/s25154788