Honeybee Colony Growth Period Recognition Based on Multivariate Temperature Feature Extraction and Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Temperature Monitoring Experiments Based on Smart Beehives
2.2. Temperature Feature Extraction
2.3. Feature Dimension Reduction Based on PCA
2.4. Growth Period Identification Based on Machine Learning
2.4.1. Unsupervised Learning Approach
2.4.2. Supervised Learning Approach
3. Results
3.1. Temperature Feature Analysis
3.2. PCA Analysis
3.3. Growth Period Identification Results
3.3.1. Unsupervised Learning Results
3.3.2. Supervised Learning Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winfree, R.; Gross, B.J.; Kremen, C. Valuing pollination services to agriculture. Ecol. Econ. 2011, 71, 80–88. [Google Scholar] [CrossRef]
- Watson, K.; Stallins, J.A. Honey bees and colony collapse disorder: A pluralistic reframing. Geogr. Compass 2016, 10, 222–236. [Google Scholar] [CrossRef]
- Genersch, E.; Von, D.O.W.; Kaatz, H.; Schroeder, A.; Otten, C.; Büchler, R.; Berg, S.; Ritter, W.; Mühlen, W.; Gisder, S.; et al. The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 2010, 41, 332–352. [Google Scholar] [CrossRef]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Desai, S.D.; Currie, R.W. Effects of wintering environment and parasite–pathogen interactions on honey bee colony loss in north temperate regions. PLoS ONE 2016, 11, e0159615. [Google Scholar] [CrossRef]
- Li, L.H.; Lu, C.Q.; Hong, W.; Zhu, Y.; Lu, Y.; Wang, Y.; Xu, B.; Liu, S. Analysis of temperature characteristics for overwinteringing bee colonies based on long-term monitoring data. Comput. Electron. Agric. 2022, 198, 107104. [Google Scholar] [CrossRef]
- Gates, B.N. Temperature of the Bee Colony; U.S. Department of Agriculture: Washington, DC, USA, 1914. [Google Scholar]
- Jones, J.C.; Myerscough, M.R.; Graham, S.; Oldroyd, B.P. Honey bee nest thermoregulation: Diversity promotes stability. Science 2004, 305, 402–404. [Google Scholar] [CrossRef]
- Zacepins, A.; Kviesis, A.; Stalidzans, E.; Liepniece, M.; Meitalovs, J. Remote detection of the swarming of honey bee colonies by single-point temperature monitoring. Biosyst. Eng. 2016, 148, 76–80. [Google Scholar] [CrossRef]
- Kviesis, A.; Zacepins, A. System architectures for real-time bee colony temperature monitoring. Procedia Comput. Sci. 2015, 43, 86–94. [Google Scholar] [CrossRef]
- Kviesis, A.; Komasilovs, V.; Komasilova, O.; Zacepins, A. Application of fuzzy logic for honey bee colony state detection based on temperature data. Biosyst. Eng. 2020, 193, 90–100. [Google Scholar] [CrossRef]
- Kridi, D.S.; de Carvalho, C.G.N.; Gomes, D.G. Application of wireless sensor networks for beehive monitoring and in-hive thermal patterns detection. Comput. Electron. Agric. 2016, 127, 221–235. [Google Scholar] [CrossRef]
- Hong, W.; Xu, B.; Chi, X.; Cui, X.; Yan, Y.; Li, T. Long-term and extensive monitoring for bee colonies based on internet of things. IEEE Internet Things J. 2020, 7, 7148–7155. [Google Scholar] [CrossRef]
- Ntawuzumunsi, E.; Kumaran, S.; Sibomana, L. Self-powered smart beehive monitoring and control system (sbmacs). Sensors 2021, 21, 3522. [Google Scholar] [CrossRef]
- Czekońska, K.; ŁopuCh, S.; Miścicki, S.; Bańkowski, J.; Szabla, K. Monitoring of hive weight changes in various landscapes. Apidologie 2023, 54, 30. [Google Scholar] [CrossRef]
- Lima, M.V.; De Queiroz, J.; Pascoal, L.A.F.; Saraiva, E.P.; Soares, K.O.; Evangelista-Rodrigues, A. Smartphone-based sound level meter application for monitoring thermal comfort of honeybees Apis mellifera L. Biol. Rhythm Res. 2021, 52, 1073–1086. [Google Scholar] [CrossRef]
- Ruvinga, S.; Hunter, G.; Duran, O.; Nebel, J.-C. Identifying queenlessness in honeybee hives from audio signals using machine learning. Electronics 2023, 12, 1627. [Google Scholar] [CrossRef]
- Uthoff, C.; Homsi, M.N.; von Bergen, M. Acoustic and vibration monitoring of honeybee colonies for beekee**-relevant aspects of presence of queen bee and swarming. Comput. Electron. Agric. 2023, 205, 107589. [Google Scholar] [CrossRef]
- Cecchi, S.; Terenzi, A.; Orcioni, S.; Spinsante, S.; Primiani, V.M.; Moglie, F.; Ruschioni, S.; Mattei, C.; Riolo, P.; Isidoro, N. Multi-sensor platform for real time measurements of honey bee hive parameters. IOP Conf. Ser. Earth Environ. Sci. 2019, 275, 012016. [Google Scholar] [CrossRef]
- Cecchi, S.; Spinsante, S.; Terenzi, A.; Orcioni, S. A smart sensor-based measurement system for advanced bee hive monitoring. Sensors 2020, 20, 2726. [Google Scholar] [CrossRef]
- Meikle, W.G.; Holst, N. Application of continuous monitoring of honeybee colonies. Apidologie 2015, 46, 10–22. [Google Scholar] [CrossRef]
- Zacepins, A.; Brusbardis, V.; Meitalovs, J.; Stalidzans, E. Challenges in the development of Precision Beekee**. Biosyst. Eng. 2015, 130, 60–71. [Google Scholar] [CrossRef]
- Hou, C.S.; Li, B.B.; Deng, S.; Diao, Q. Effects of Varroa destructor on temperature and humidity conditions and expression of energy metabolism genes in infested honeybee colonies. Genet. Mol. Res. 2016, 15, 15038997. [Google Scholar] [CrossRef] [PubMed]
- Robustillo, M.C.; Pérez, C.J.; Parra, M.I. Predicting internal conditions of beehives using precision beekeeping. Biosyst. Eng. 2022, 221, 19–29. [Google Scholar] [CrossRef]
- Braga, A.R.; Freitas, B.M.; Gomes, D.G.; Bezerra, A.D.; Cazier, J.A. Forecasting sudden drops of temperature in pre-overwintering honeybee colonies. Biosyst. Eng. 2021, 209, 315–321. [Google Scholar] [CrossRef]
- Zhu, X.; Wen, X.; Zhou, S.; Xu, X.; Zhou, L.; Zhou, B. The temperature increase at one position in the colony can predict honey bee swarming (Apis cerana). J. Apic. Res. 2019, 58, 489–491. [Google Scholar] [CrossRef]
- Lu, Y.T.; Hong, W.; Liu, Z.; Wang, Y.; Wang, H.; Chen, W.; Liu, S.; Yan, Y.; Xu, B. Research on the orientation flights and colony development of Apis cerana based on smart beehives. Comput. Electron. Agric. 2022, 193, 106733. [Google Scholar] [CrossRef]
- Lu, C.Q.; Wang, S.P.; Makis, V. Fault severity recognition of aviation piston pump based on feature extraction of EEMD paving and optimized support vector regression model. Aerosp. Sci. Technol. 2017, 67, 105–117. [Google Scholar] [CrossRef]
- Qi, J.; Gao, X.; Huang, N. Mechanical fault diagnosis of a high voltage circuit breaker based on high-efficiency time-domain feature extraction with entropy features. Entropy 2020, 22, 478. [Google Scholar] [CrossRef]
- Lei, Y.G.; Zuo, M.J. Gear crack level identification based on weighted K nearest neighbor classification algorithm. Mech. Syst. Signal Process. 2009, 23, 1535–1547. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liang, Y.T.; Zhou, J.Z.; Zang, Y. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM. Measurement 2015, 69, 164–179. [Google Scholar] [CrossRef]
- Shen, C.Q.; Wang, D.; Liu, Y.B.; Kong, F.; Tse, P.W. Recognition of rolling bearing fault patterns and sizes based on two-layer support vector regression model. Smart Struct. Syst. 2014, 13, 453–471. [Google Scholar] [CrossRef]
Performance Index | Testing Samples of Tai’an | Testing Samples of Tai’an and Guilin | ||||
---|---|---|---|---|---|---|
TS-FCM | SVM | BP | TS-FCM | SVM | BP | |
MSE | 0.0359 | 0.0303 | 0.0004 | 0.4958 | 0.4803 | 0.0031 |
MAE | 0.0951 | 0.0152 | 0.0145 | 0.2563 | 0.2039 | 0.0405 |
MRE | 0.0546 | 0.0051 | 0.0070 | 0.4033 | 0.2039 | 0.0242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.; Li, L.; Li, D.; Huang, Q.; Hong, W. Honeybee Colony Growth Period Recognition Based on Multivariate Temperature Feature Extraction and Machine Learning. Sensors 2025, 25, 3916. https://doi.org/10.3390/s25133916
Lu C, Li L, Li D, Huang Q, Hong W. Honeybee Colony Growth Period Recognition Based on Multivariate Temperature Feature Extraction and Machine Learning. Sensors. 2025; 25(13):3916. https://doi.org/10.3390/s25133916
Chicago/Turabian StyleLu, Chuanqi, Lin Li, Denghua Li, Qiuying Huang, and Wei Hong. 2025. "Honeybee Colony Growth Period Recognition Based on Multivariate Temperature Feature Extraction and Machine Learning" Sensors 25, no. 13: 3916. https://doi.org/10.3390/s25133916
APA StyleLu, C., Li, L., Li, D., Huang, Q., & Hong, W. (2025). Honeybee Colony Growth Period Recognition Based on Multivariate Temperature Feature Extraction and Machine Learning. Sensors, 25(13), 3916. https://doi.org/10.3390/s25133916