A Line-Source Approach for Simulating MammoWave Microwave Imaging Apparatus for Breast Lesion Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. MammoWave Description
2.2. Line-Source Theory
2.3. Mammowave Simulation
3. Results
4. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nikolova, N.K. Microwave Imaging for Breast Cancer. IEEE Microw. Mag. 2011, 12, 78–94. [Google Scholar] [CrossRef]
- Shah, T.A.; Guraya, S.S. Breast cancer screening programs: Review of merits, demerits, and recent recommendations practiced across the world. J. Microsc. Ultrastruct. 2017, 5, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. Microwave Imaging and Sensing Techniques for Breast Cancer Detection. Micromachines 2023, 14, 1462. [Google Scholar] [CrossRef] [PubMed]
- Aldhaeebi, M.A.; Alzoubi, K.; Almoneef, T.S.; Bamatraf, S.M.; Attia, H.; Ramahi, O.M. Review of Microwaves Techniques for Breast Cancer Detection. Sensors 2020, 20, 2390. [Google Scholar] [CrossRef] [PubMed]
- Vispa, A.; Sani, L.; Paoli, M.; Bigotti, A.; Raspa, G.; Ghavami, N.; Caschera, S.; Ghavami, M.; Duranti, M.; Tiberi, G. UWB device for breast microwave imaging: Phantom and clinical validations. Measurement 2019, 146, 582–589. [Google Scholar] [CrossRef]
- Sánchez-Bayuela, D.A.; Ghavami, N.; Tiberi, G.; Sani, L.; Vispa, A.; Bigotti, A.; Raspa, G.; Badia, M.; Papini, L.; Ghavami, M.; et al. A multicentric, single arm, prospective, stratified clinical investigation to evaluate MammoWave’s ability in breast lesions detection. PLoS ONE 2023, 18, e0288312. [Google Scholar] [CrossRef] [PubMed]
- Álvarez Sánchez-Bayuela, D.; Fernández Martín, J.; Tiberi, G.; Ghavami, N.; González, R.G.; Hernánez, L.M.C.; Angulo, P.M.A.; Gómez, A.D.M.; Sánchez, A.R.; Bigotti, A.; et al. Microwave imaging for breast cancer screening: Protocol for an open, multicentric, interventional, prospective, non-randomised clinical investigation to evaluate cancer detection capabilities of MammoWave system on an asymptomatic population across multiple European countries. BMJ Open 2024, 14, e088431. [Google Scholar] [CrossRef] [PubMed]
- Grzegorczyk, T.M.; Meaney, P.M.; Kaufman, P.A.; diFlorio Alexander, R.M.; Paulsen, K.D. Fast 3-D Tomographic Microwave Imaging for Breast Cancer Detection. IEEE Trans. Med. Imaging 2012, 31, 1584–1592. [Google Scholar] [CrossRef] [PubMed]
- Sidebottom, R.; Webb, D.; Bishop, B.; Kabir, M.; Allen, S. Results for the London investigation into dielectric scanning of lesions study of the MARIA M6 breast imaging system. Br. J. Radiol. 2024, 97, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Ghavami, N.; Probert Smith, P.; Tiberi, G.; Edwards, D.; Craddock, I. Non-iterative beamforming based on Huygens principle for multistatic ultrawide band radar: Application to breast imaging. IET Microw. Antennas Propag. 2015, 9, 1233–1240. [Google Scholar] [CrossRef]
- Moloney, B.M.; McAnena, P.F.; Abd Elwahab, S.M.; Fasoula, A.; Duchesne, L.; Gil Cano, J.D.; Glynn, C.; O’Connell, A.; Ennis, R.; Lowery, A.J.; et al. Microwave Imaging in Breast Cancer – Results from the First-In-Human Clinical Investigation of the Wavelia System. Acad. Radiol. 2022, 29, S211–S222. [Google Scholar] [CrossRef] [PubMed]
- Janjic, A.; Cayoren, M.; Akduman, I.; Yilmaz, T.; Onemli, E.; Bugdayci, O.; Aribal, M.E. SAFE: A Novel Microwave Imaging System Design for Breast Cancer Screening and Early Detection—Clinical Evaluation. Diagnostics 2021, 11, 533. [Google Scholar] [CrossRef] [PubMed]
- Duchesne, L.; Fasoula, A.; Kaverine, E.; Robin, G.; Bernard, J. Wavelia Microwave Breast Imaging: Identification and Mitigation of possible Sources of Measurement Uncertainty. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Conceição, R.C.; Mohr, J.J.; Jacob, J.; O’Halloran, M. An Introduction to Microwave Imaging for Breast Cancer Detection; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Elahi, M.A.; Glavin, M.; Jones, E.; O’Halloran, M. Adaptive artifact removal for selective multistatic microwave breast imaging signals. Biomed. Signal Process. Control 2017, 34, 93–100. [Google Scholar] [CrossRef]
- Tropp, J. Image brightening in samples of high dielectric constant. J. Magn. Reson. 2004, 167, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Tiberi, G.; Costagli, M.; Stara, R.; Cosottini, M.; Tropp, J.; Tosetti, M. Electromagnetic characterization of an MR volume coil with multilayered cylindrical load using a 2-D analytical approach. J. Magn. Reson. 2013, 230, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Harrington, R.F. Time-Harmonic Electromagnetic Fields; McGraw-Hill Book Company: New York, NY, USA, 1961. [Google Scholar]
- Tiberi, G.; Ghavami, N.; Edwards, D.J.; Monorchio, A. UWB Microwave Imaging of Cylindrical Objects with Inclusions. IET Microw. Antennas Propag. 2011, 5, 1440–1446. [Google Scholar] [CrossRef]
- Lazebnik, M.; Popovic, D.; McCartney, L.; Watkins, C.B.; Lindstrom, M.J.; Harter, J.; Sewall, S.; Ogilvie, T.; Magliocco, A.; Breslin, T.M.; et al. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys. Med. Biol. 2007, 52, 6093–6115. [Google Scholar] [CrossRef] [PubMed]
- Parrikar, R.P.; Kishk, A.A.; Elsherbeni, A.Z. Scattering from an impedance cylinder embedded in a nonconcentric dielectric cylinder. In Proceedings of the IEEE Southeastcon, New Orleans, LA, USA, 1–4 April 1990; Volume 3, pp. 1002–1007. [Google Scholar] [CrossRef]
- Meaney, P.M.; Fox, C.J.; Geimer, S.D.; Paulsen, K.D. Electrical Characterization of Glycerin: Water Mixtures: Implications for Use as a Coupling Medium in Microwave Tomography. IEEE Trans. Microw. Theory Tech. 2017, 65, 1471–1478. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Origlia, C.; Rodriguez-Duarte, D.O.; Tobon Vasquez, J.A.; Bolomey, J.-C.; Vipiana, F. Review of Microwave Near-Field Sensing and Imaging Devices in Medical Applications. Sensors 2024, 24, 4515. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Duarte, D.O.; Tobon Vasquez, J.A.; Vipiana, F. Hybrid simulation-measurement calibration technique for microwave imaging systems. In Proceedings of the 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021; pp. 1–5. [Google Scholar]
- Martin, B.; Edwards, K.; Jeffrey, I.; Gilmore, C. Experimental Microwave Imaging System Calibration via Cycle-GAN. IEEE Trans. Antennas Propag. 2023, 71, 7491–7503. [Google Scholar] [CrossRef]
MammoWave | Dartmouth College | MARIA | Wavelia | SAFE | |
---|---|---|---|---|---|
Array type | Synthetic | Synthetic | Hardware | Synthetic | Synthetic |
Geometry | Cylindrical | Cylindrical | Hemispherical | Cylindrical | Cylindrical |
Antenna | Horn/Vivaldi | Monopole | Slot | Vivaldi | Vivaldi |
No. of antennas | 2 | 16 | 60 | 21 | 2 |
Frequency (GHz) | 1–9 | 0.7–1.7 | 3–10 | 0.8–4 | 1–8 |
Coupling medium | None | Liquid | Shell + liquid | Creamy liquid | Shell |
Algorithm | HP | Tomography | DAS | TR-MUSIC | LSM + FM |
Scan time (min) | 8 | 2 | 0.17 | 15 | 7 |
Largest trial | 4000 | 400 | 389 | 73 | 115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghavami, N.; Dudley, S.; Ghavami, M.; Tiberi, G. A Line-Source Approach for Simulating MammoWave Microwave Imaging Apparatus for Breast Lesion Detection. Sensors 2025, 25, 3640. https://doi.org/10.3390/s25123640
Ghavami N, Dudley S, Ghavami M, Tiberi G. A Line-Source Approach for Simulating MammoWave Microwave Imaging Apparatus for Breast Lesion Detection. Sensors. 2025; 25(12):3640. https://doi.org/10.3390/s25123640
Chicago/Turabian StyleGhavami, Navid, Sandra Dudley, Mohammad Ghavami, and Gianluigi Tiberi. 2025. "A Line-Source Approach for Simulating MammoWave Microwave Imaging Apparatus for Breast Lesion Detection" Sensors 25, no. 12: 3640. https://doi.org/10.3390/s25123640
APA StyleGhavami, N., Dudley, S., Ghavami, M., & Tiberi, G. (2025). A Line-Source Approach for Simulating MammoWave Microwave Imaging Apparatus for Breast Lesion Detection. Sensors, 25(12), 3640. https://doi.org/10.3390/s25123640