Enhancing Accuracy of Flame Equivalence Ratio Measurements: An Attention-Based Convolutional Neural Network Approach for Overcoming Limitations in Traditional Color Modeling
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. ACN
2.2.1. Overall Network Structure of ACN
2.2.2. CP128 Layer: Feature Detection and Refinement
2.2.3. ATT: Focusing on Flame Features
2.2.4. Output Layer: Feature Transformation and Predictive Φ
2.3. Traditional Color Modeling
2.3.1. Analysis of Flame Image Structure
2.3.2. Modulation of H Threshold in DFCD
3. Results
3.1. Simulation Curve of Traditional Color Modeling
3.2. Evaluating ACN Performance: Ablation Study Insights
4. Discussion (Comparative Analysis: ACN Model Versus Traditional Color Model)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nau, P.; Krüger, J.; Lackner, A.; Letzgus, M.; Brockhinke, A. On the quantification of OH*, CH*, and C2* chemiluminescence in flames. Appl. Phys. B 2012, 107, 551–559. [Google Scholar] [CrossRef]
- Bozkurt, M.; Fikri, M.; Schulz, C. Investigation of the kinetics of OH* and CH* chemiluminescence in hydrocarbon oxidation behind reflected shock waves. Appl. Phys. B 2012, 107, 515–527. [Google Scholar] [CrossRef]
- Yang, H.; Fu, Y.; Yang, J. Review of Measurement Techniques of Hydrocarbon Flame Equivalence ratio and Applications of Machine Learning. Meas. Sci. Rev. 2022, 22, 122–135. [Google Scholar] [CrossRef]
- Haber, L.C. An Investigation into the Origin, Measurement and Application of Chemiluminescent Light Emissions from Premixed Flames. Va. Tech 2000. Available online: http://hdl.handle.net/10919/31472 (accessed on 10 January 2024).
- Studies of OH, CO, CH, and C2 Radiation From Laminar and Turbulent Propane-Air and Ethylene-Air Flames UNT Digital Library. Available online: https://digital.library.unt.edu/ark:/67531/metadc57518/ (accessed on 10 January 2024).
- Kojima, J.; Ikeda, Y.; Nakajima, T. Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames. Proc. Combust. Inst. 2000, 28, 1757–1764. [Google Scholar] [CrossRef]
- Kojima, J.; Ikeda, Y.; Nakajima, T. Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane–air premixed flames. Combust. Flame 2005, 140, 34–45. [Google Scholar] [CrossRef]
- Maxwell, Color Vision, and the Color Triangle. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11099/110990A/Maxwell-colour-vision-and-the-colour-triangle/10.1117/12.2529364.short#_=_ (accessed on 10 January 2024).
- Huang, H.W.; Zhang, Y. Digital color image processing based measurement of premixed CH4+air and C2H4+air flame chemiluminescence. Fuel 2011, 90, 48–53. [Google Scholar] [CrossRef]
- Huang, H.-W.; Zhang, Y. Flame color characterization in the visible and infrared spectrum using a digital camera and image processing. Meas. Sci. Technol. 2008, 19, 085406. [Google Scholar] [CrossRef]
- Yang, J.; Ma, Z.; Zhang, Y. Improved color-modelled CH* and C2* measurement using a digital color camera. Measurement 2019, 141, 235–240. [Google Scholar] [CrossRef]
- Mishra, T.K.; DATTa, A.; Mukhopadhyay, A. Comparison of the structures of methane–air and propane–air partially premixed flames. Fuel 2006, 85, 1254–1263. [Google Scholar] [CrossRef]
- Huang, H.W.; Zhang, Y. Dynamic application of digital image and color processing in characterizing flame radiation features. Meas. Sci. Technol. 2010, 21, 085202. [Google Scholar] [CrossRef]
- Huang, H.W.; Zhang, Y. Imaging based chemiluminescence characterisation of partially premixed syngas flames through DFCD technique. Int. J. Hydrog. Energy 2013, 38, 4839–4847. [Google Scholar] [CrossRef]
- The Radon Transform over Cones with Vertices on the Sphere and Orthogonal Axes|SIAM Journal on Applied Mathematics. Available online: https://epubs.siam.org/doi/abs/10.1137/16M1079476 (accessed on 10 January 2024).
- Abdurakipov, S.; Butakov, E. Application of computer vision and deep learning for flame monitoring and combustion anomaly detection. J. Phys. Conf. Ser. 2019, 1421, 012005. [Google Scholar] [CrossRef]
- Han, Z.; Hossain, M.M.; Wang, Y.; Li, J.; Xu, C. Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network. Appl. Energy 2020, 259, 114159. [Google Scholar] [CrossRef]
- Han, Z.; Li, J.; Zhang, B.; Hossain, M.M.; Xu, C. Prediction of combustion state through a semi-supervised learning model and flame imaging. Fuel 2021, 289, 119745. [Google Scholar] [CrossRef]
- Han, Z.; Li, J.; Hossain, M.M.; Qi, Q.; Zhang, B.; Xu, C. An ensemble deep learning model for exhaust emissions prediction of heavy oil-fired boiler combustion. Fuel 2022, 308, 121975. [Google Scholar] [CrossRef]
- Qin, L.; Lu, G.; Hossain, M.M.; Morris, A.; Yan, Y. A Flame Imaging-Based Online Deep Learning Model for Predicting NOx Emissions From an Oxy-Biomass Combustion Process. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, Y.; Chen, J. Flame Images for Oxygen Content Prediction of Combustion Systems Using DBN|Energy & Fuels. Available online: https://pubs.acs.org/doi/full/10.1021/acs.energyfuels.7b00576 (accessed on 10 January 2024).
- Jogin, M.; Mohana; Madhulika, M.S.; Divya, G.D.; Meghana, R.K.; Apoorva, S. Feature Extraction using Convolution Neural Networks (CNN) and Deep Learning. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; pp. 2319–2323. [Google Scholar] [CrossRef]
- Niu, Z.; Zhong, G.; Yu, H. A Review on the Attention Mechanism of Deep Learning ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S092523122100477X (accessed on 10 January 2024).
Tensor | Dimension |
---|---|
Inputs | (127, 127, 128) |
Mean | (127, 1, 128) |
Diff | (127, 127, 128) |
W0, W1 | (128, 32) |
B0, B1 | (127, 127, 32) |
Score1, Score2 | (127, 127, 32) |
V | (32, 1) |
Weight | (127, 127, 1) |
Mask | (127, 127, 1) |
Output | (127, 127, 1) |
Model Structure | R2 | SR22 | MAE | SMAE2 |
---|---|---|---|---|
ATT | 0.9176 | 1.20 × 10−4 | 0.0610 | 1.8 × 10−5 |
CP128 | 0.9763 | 1.06 × 10−4 | 0.0272 | 2.38 × 10−5 |
ATT-CP128 | 0.9809 | 7.56 × 10−6 | 0.0200 | 8.52 × 10−6 |
CP128-ATT | 0.995 | 818 × 10−8 | 0.0122 | 3.45 × 10−7 |
Model | R2 | SR22 | MAE | SMAE2 |
---|---|---|---|---|
Color-Φ model | 0.9375 | 1.22 × 10−5 | 0.0504 | 1.49 × 10−6 |
ACN model | 0.9958 | 8.18 × 10−8 | 0.0122 | 3.45 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Yang, T.; Liu, W.; Lai, Y.; Yang, J. Enhancing Accuracy of Flame Equivalence Ratio Measurements: An Attention-Based Convolutional Neural Network Approach for Overcoming Limitations in Traditional Color Modeling. Sensors 2024, 24, 6853. https://doi.org/10.3390/s24216853
Zheng L, Yang T, Liu W, Lai Y, Yang J. Enhancing Accuracy of Flame Equivalence Ratio Measurements: An Attention-Based Convolutional Neural Network Approach for Overcoming Limitations in Traditional Color Modeling. Sensors. 2024; 24(21):6853. https://doi.org/10.3390/s24216853
Chicago/Turabian StyleZheng, Lukai, Tiantian Yang, Wenjia Liu, Yufeng Lai, and Jiansheng Yang. 2024. "Enhancing Accuracy of Flame Equivalence Ratio Measurements: An Attention-Based Convolutional Neural Network Approach for Overcoming Limitations in Traditional Color Modeling" Sensors 24, no. 21: 6853. https://doi.org/10.3390/s24216853
APA StyleZheng, L., Yang, T., Liu, W., Lai, Y., & Yang, J. (2024). Enhancing Accuracy of Flame Equivalence Ratio Measurements: An Attention-Based Convolutional Neural Network Approach for Overcoming Limitations in Traditional Color Modeling. Sensors, 24(21), 6853. https://doi.org/10.3390/s24216853