Elastic Self-Recovering Hybrid Nanogenerator for Water Wave Energy Harvesting and Marine Environmental Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing of ES-HNG
2.2. Characterization and Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.L. Catch wave power in floating nets. Nature 2017, 542, 159–160. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Jiang, T.; Liu, G.X.; Feng, Y.W.; Zhang, C.; Wang, Z.L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energ. Environ. Sci. 2020, 13, 277–285. [Google Scholar] [CrossRef]
- Kaidarova, A.; Geraldi, N.R.; Wilson, R.P.; Kosel, J.; Meekan, M.G.; Eguiluz, V.M.; Hussain, M.M.; Shamim, A.; Liao, H.G.; Srivastava, M.; et al. Wearable sensors for monitoring marine environments and their inhabitants. Nat. Biotechnol. 2023, 41, 1208–1220. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.Y.; Li, Y.; Bao, F.W.; Xu, H.X.; Yang, Y.P.; Yan, Q.S.; Zhong, S.Q.; Yin, H.Y.; Xu, J.J.; Huang, Z.W.; et al. Marine environmental monitoring with unmanned vehicle platforms: Present applications and future prospects. Sci. Total Environ. 2023, 858, 159741. [Google Scholar] [CrossRef] [PubMed]
- Erichsen, A.C.; Middelboe, A.L. Introduction to the special series, “The future of marine environmental monitoring and assessment”. Integr. Environ. Asses. 2022, 18, 888–891. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Li, M.F.; Hu, J.X.; Zhao, Y.L.; Cui, W.Q.; Wang, Y.L.; Yu, A.F.; Zhai, J.Y. Maximizing the energy conversion of triboelectric nanogenerator through the synergistic effect of high coupling and dual-track circuit for marine monitoring. Nano Energy 2024, 121, 109240. [Google Scholar] [CrossRef]
- Albaladejo, C.; Sánchez, P.; Iborra, A.; Soto, F.; López, J.A.; Torres, R. Wireless Sensor Networks for Oceanographic Monitoring: A Systematic Review. Sensors 2010, 10, 6948–6968. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.B.; Shen, W.M.; Wang, X.B. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey. Sensors 2014, 14, 16932–16954. [Google Scholar] [CrossRef]
- Liang, S.; Cheng, S.; Zhang, H.; Yang, W.; Yi, Z.; Zeng, Q.; Tang, B.; Wu, P.; Ahmad, S.; Sun, T. Structural color tunable intelligent mid-infrared thermal control emitter. Ceram. Int. 2024, 50, 23611–23620. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.L.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew. Sust. Energ. Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- Li, H.F.; Berbille, A.; Zhao, X.; Wang, Z.M.; Tang, W.; Wang, Z.L. A contact-electro-catalytic cathode recycling method for spent lithium-ion batteries. Nat. Energy 2023, 8, 1137–1144. [Google Scholar] [CrossRef]
- Niu, S.M.; Wang, X.F.; Yi, F.; Zhou, Y.S.; Wang, Z.L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology and self-powered sensors-Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.R.; Xu, F.; Li, W.X.; Yang, W.X.; Cheng, S.B.; Yang, H.; Chen, J.; Yi, Z.; Jiang, P.P. Tunable smart mid infrared thermal control emitter based on phase change material VO2 thin film. Appl. Therm. Eng. 2023, 232, 121074. [Google Scholar] [CrossRef]
- Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Wang, Z.L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82. [Google Scholar] [CrossRef]
- Yu, G.; Wen, J.; Li, H.; Shang, Y.R.; Wang, Z.L.; Chen, B.D. Vibration-coupled TENGs from weak to ultra-strong induced by vortex for harvesting low-grade airflow energy. Nano Energy 2024, 119, 109062. [Google Scholar] [CrossRef]
- Wu, C.S.; Wang, A.C.; Ding, W.B.; Guo, H.Y.; Wang, Z.L. Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 2019, 9, 1802906. [Google Scholar] [CrossRef]
- Miao, X.; Yang, H.X.; Li, Z.K.; Cheng, M.F.; Zhao, Y.L.; Wan, L.Y.; Yu, A.F.; Zhai, J.Y. A columnar multi-layer sliding triboelectric nanogenerator for water wave energy harvesting independent of wave height and direction. Nano Res. 2024, 17, 3029–3034. [Google Scholar] [CrossRef]
- Liu, L.Q.; Yang, X.Y.; Zhao, L.L.; Hong, H.X.; Cui, H.; Duan, J.L.; Yang, Q.M.; Tang, Q.W. Nodding Duck Structure Multi-track Directional Freestanding Triboelectric Nanogenerator toward Low-Frequency Ocean Wave Energy Harvesting. ACS Nano 2021, 15, 9412–9421. [Google Scholar] [CrossRef]
- Babu, A.; Bochu, L.; Potu, S.; Kaja, R.; Madathil, N.; Velpula, M.; Kulandaivel, A.; Khanapuram, U.K.; Rajaboina, R.K.; Divi, H.; et al. Facile Direct Growth of ZIF-67 Metal-Organic Framework for Triboelectric Nanogenerators and Their Application in the Internet of Vehicles. ACS Sustain. Chem. Eng. 2023, 11, 16806–16817. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.L.; He, W.C.; Guo, H.Y.; Long, L.; Xi, Y.; Wang, X.; Liu, A.P.; Hu, C.G. Ultrahigh Electricity Generation from Low-Frequency Mechanical Energy by Efficient Energy Management. Joule 2021, 5, 441–455. [Google Scholar] [CrossRef]
- Zi, Y.; Guo, H.; Wen, Z.; Yeh, M.-H.; Hu, C.; Wang, Z.L. Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator. ACS Nano 2016, 10, 4797–4805. [Google Scholar]
- Jiang, T.; Pang, H.; An, J.; Lu, P.J.; Feng, Y.W.; Liang, X.; Zhong, W.; Wang, Z.L. Robust Swing-Structured Triboelectric Nanogenerator for Efficient Blue Energy Harvesting. Adv. Energy Mater. 2020, 10, 2000064. [Google Scholar] [CrossRef]
- Pang, L.; Li, Z.; Zhao, Y.; Zhang, X.; Du, W.; Chen, L.; Yu, A.; Zhai, J. Triboelectric Nanogenerator Based on Polyimide/Boron Nitride Nanosheets/Polyimide Nanocomposite Film with Enhanced Electrical Performance. ACS Appl. Electron. Mater. 2022, 4, 3027–3035. [Google Scholar] [CrossRef]
- Yang, H.M.; Deng, M.M.; Tang, Q.; He, W.C.; Hu, C.G.; Xi, Y.; Liu, R.C.; Wang, Z.L. A Nonencapsulative Pendulum-Like Paper-Based Hybrid Nanogenerator for Energy Harvesting. Adv. Energy Mater. 2019, 9, 1901149. [Google Scholar] [CrossRef]
- Lin, Z.M.; Zhang, B.B.; Guo, H.Y.; Wu, Z.Y.; Zou, H.Y.; Yang, J.; Wang, Z.L. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 2019, 64, 103908. [Google Scholar] [CrossRef]
- Chen, X.; Gao, L.X.; Chen, J.F.; Lu, S.; Zhou, H.; Wang, T.T.; Wang, A.B.; Zhang, Z.F.; Guo, S.F.; Mu, X.J.; et al. A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 2020, 69, 104440. [Google Scholar] [CrossRef]
- Rui, P.S.; Zhang, W.; Zhong, Y.M.; Wei, X.X.; Guo, Y.C.; Shi, S.W.; Liao, Y.L.; Cheng, J.; Wang, P.H. High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy 2020, 74, 104937. [Google Scholar] [CrossRef]
- Tan, D.J.; Zeng, Q.X.; Wang, X.; Yuan, S.L.; Luo, Y.L.; Zhang, X.F.; Tan, L.M.; Hu, C.G.; Liu, G.L. Anti-Overturning Fully Symmetrical Triboelectric Nanogenerator Based on an Elliptic Cylindrical Structure for All-Weather Blue Energy Harvesting. Nano-Micro Lett. 2022, 14, 124. [Google Scholar] [CrossRef]
- Feng, Y.W.; Liang, X.; An, J.; Jiang, T.; Wang, Z.L. Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 2021, 81, 105625. [Google Scholar] [CrossRef]
- He, G.F.; Luo, Y.J.; Zhai, Y.; Wu, Y.; You, J.; Lu, R.; Zeng, S.K.; Wang, Z.L. Regulating random mechanical motion using the principle of auto-winding mechanical watch for driving TENG with constant AC output-An approach for efficient usage of high entropy energy. Nano Energy 2021, 87, 106195. [Google Scholar] [CrossRef]
- Cao, B.; Wang, P.H.; Rui, P.S.; Wei, X.X.; Wang, Z.X.; Yang, Y.W.; Tu, X.B.; Chen, C.; Wang, Z.Z.; Yang, Z.Q.; et al. Broadband and Output-Controllable Triboelectric Nanogenerator Enabled by Coupling Swing-Rotation Switching Mechanism with Potential Energy Storage/Release Strategy for Low-Frequency Mechanical Energy Harvesting. Adv. Energy Mater. 2022, 12, 2202627. [Google Scholar] [CrossRef]
- Xu, Y.H.; Yang, W.X.; Lu, X.H.; Yang, Y.F.; Li, J.P.; Wen, J.M.; Cheng, T.H.; Wang, Z.L. Triboelectric Nanogenerator for Ocean Wave Graded Energy Harvesting and Condition Monitoring. ACS Nano 2021, 15, 16368–16375. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.X.; Jiang, T.; Zhu, J.X.; Liang, X.; Xu, L.; Shao, J.J.; Zhang, C.L.; Wang, J.; Wang, Z.L. Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting. ACS Appl. Mater. Inter. 2018, 10, 3616–3623. [Google Scholar] [CrossRef]
- Xiao, T.X.; Liang, X.; Jiang, T.; Xu, L.; Shao, J.J.; Nie, J.H.; Bai, Y.; Zhong, W.; Wang, Z.L. Spherical Triboelectric Nanogenerators Based on Spring-Assisted Multilayered Structure for Efficient Water Wave Energy Harvesting. Adv. Funct. Mater. 2018, 28, 1802634. [Google Scholar] [CrossRef]
- Xi, F.B.; Pang, Y.K.; Liu, G.X.; Wang, S.W.; Li, W.; Zhang, C.; Wang, Z.L. Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy 2019, 61, 1–9. [Google Scholar] [CrossRef]
- Hong, H.X.; Yang, X.Y.; Cui, H.; Zheng, D.; Wen, H.Y.; Huang, R.Y.; Liu, L.Q.; Duan, J.L.; Tang, Q.W. Self-powered seesaw structured spherical buoys based on a hybrid triboelectric-electromagnetic nanogenerator for sea surface wireless positioning. Energy Environ. Sci. 2022, 15, 621–632. [Google Scholar] [CrossRef]
- Shao, H.Y.; Cheng, P.; Chen, R.X.; Xie, L.J.; Sun, N.; Shen, Q.Q.; Chen, X.P.; Zhu, Q.Q.; Zhang, Y.; Liu, Y.N.; et al. Triboelectric Electromagnetic Hybrid Generator for Harvesting Blue Energy. Nano-Micro Lett. 2018, 10, 54. [Google Scholar] [CrossRef]
- Sun, Y.G.; Zheng, F.Y.; Wei, X.L.; Shi, Y.P.; Li, R.N.; Wang, B.C.; Wang, L.F.; Wu, Z.Y.; Wang, Z.L. Pendular-Translational Hybrid Nanogenerator Harvesting Water Wave Energy. ACS Appl. Mater. Inter. 2022, 14, 15187–15194. [Google Scholar] [CrossRef]
- Panda, S.; Hajra, S.; Oh, Y.; Oh, W.; Lee, J.H.Y.; Shin, H.; Vivekananthan, V.; Yang, Y.; Mishra, Y.K.; Kim, H.J. Hybrid Nanogenerators for Ocean Energy Harvesting: Mechanisms, Designs, and Applications. Small 2023, 19, 2300847. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Yu, G.; Lou, Y.; Li, M.; Hu, J.; Li, J.; Cui, W.; Yu, A.; Zhai, J. Elastic Self-Recovering Hybrid Nanogenerator for Water Wave Energy Harvesting and Marine Environmental Monitoring. Sensors 2024, 24, 3770. https://doi.org/10.3390/s24123770
Wang Q, Yu G, Lou Y, Li M, Hu J, Li J, Cui W, Yu A, Zhai J. Elastic Self-Recovering Hybrid Nanogenerator for Water Wave Energy Harvesting and Marine Environmental Monitoring. Sensors. 2024; 24(12):3770. https://doi.org/10.3390/s24123770
Chicago/Turabian StyleWang, Qiuxiang, Gao Yu, Ying Lou, Mengfan Li, Jiaxi Hu, Jiaodi Li, Weiqi Cui, Aifang Yu, and Junyi Zhai. 2024. "Elastic Self-Recovering Hybrid Nanogenerator for Water Wave Energy Harvesting and Marine Environmental Monitoring" Sensors 24, no. 12: 3770. https://doi.org/10.3390/s24123770
APA StyleWang, Q., Yu, G., Lou, Y., Li, M., Hu, J., Li, J., Cui, W., Yu, A., & Zhai, J. (2024). Elastic Self-Recovering Hybrid Nanogenerator for Water Wave Energy Harvesting and Marine Environmental Monitoring. Sensors, 24(12), 3770. https://doi.org/10.3390/s24123770