Robotic Technology in Foot and Ankle Surgery: A Comprehensive Review
Abstract
:1. Introduction
2. Methodology
3. Translational/Preclinical Review
4. Deep Learning and Artificial Intelligence
5. Clinical Applications in Foot and Ankle Surgery
Author | Robot/System Name | Year | Function | Use |
---|---|---|---|---|
Richter et al. [16] | ISO-C-3D | 2009 | Mobile C-arm obtaining 3D images | Intraoperative evaluation of anatomical reduction and implant placement. |
Thomas et al. [37] | U-Net | 2021 | Extracts relevant image regions from a C-arm image | Provides contralateral side comparison of non-injured ankle joint during reduction of ankle fractures. |
Kutaish et al. [39] | O-ArmTM | 2014 | C-arm providing real-time instrumented navigation via osseous reference frame | Triangulate spatial position for open reduction and internal fixation of calcaneus or pilon fractures, malunion correction, amongst other procedures. |
Mazzotti et al. [52] | Infinity, INBONE II, and BOXTAR | 2022 | Custom-made cutting blocks | Improving implant positioning in total ankle replacement. |
Saito et al. [55] | PSI for TAA | 2019 | Provides preoperative plan reports for TAA implant sizing based on imaging. | Tibial implant positioning. However, this study found no difference between PSI for TAA in comparison to the standard cutting guide. |
6. Therapy, Prosthetics, & Orthotics
7. Discussion
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonnell, J.M.; Ahern, D.P.; Doinn, T.Ó.; Gibbons, D.; Rodrigues, K.N.; Birch, N.; Butler, J.S. Surgeon proficiency in robot-assisted spine surgery. Bone Jt. J. 2020, 102-B, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Jacofsky, D.J.; Allen, M. Robotics in Arthroplasty: A Comprehensive Review. J. Arthroplast. 2016, 31, 2353–2363. [Google Scholar] [CrossRef] [PubMed]
- Robotics: A Brief History. Available online: https://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/robotics/history.html (accessed on 26 November 2022).
- Ranev, D.; Teixeira, J. History of Computer-Assisted Surgery. Surg. Clin. N. Am. 2020, 100, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Gourin, C.G.; Terris, D.J. History of robotic surgery. In Robotics in Surgery: History, Current and Future Applications; Nova Science Publishers, Inc.: New York, NY, USA, 2007; pp. 3–12. [Google Scholar]
- Schulz, A.P.; Seide, K.; Queitsch, C.; von Haugwitz, A.; Meiners, J.; Kienast, B.; Tarabolsi, M.; Kammal, M.; Jürgens, C. Results of total hip replacement using the Robodoc surgical assistant system: Clinical outcome and evaluation of complications for 97 procedures. Int. J. Med. Robot. 2007, 3, 301–306. [Google Scholar] [CrossRef]
- Lang, J.E.; Mannava, S.; Floyd, A.J.; Goddard, M.S.; Smith, B.P.; Mofidi, A.; Seyler, T.M.; Jinnah, R.H. Robotic systems in orthopaedic surgery. J. Bone Jt. Surg. Br. 2011, 93, 1296–1299. [Google Scholar] [CrossRef] [Green Version]
- Netravali, N.A.; Shen, F.; Park, Y.; Bargar, W.L. A perspective on robotic assistance for knee arthroplasty. Adv. Orthop. 2013, 2013, 970703. [Google Scholar] [CrossRef] [Green Version]
- Smith-Bindman, R.; Lipson, J.; Marcus, R.; Kim, K.-P.; Mahesh, M.; Gould, R.; Berrington de González, A.; Miglioretti, D.L. Radiation Dose Associated With Common Computed Tomography Examinations and the Associated Lifetime Attributable Risk of Cancer. Arch. Intern. Med. 2009, 169, 2078–2086. [Google Scholar] [CrossRef]
- Hernandez, D.; Garimella, R.; Eltorai, A.E.; Daniels, A.H. Computer-assisted Orthopaedic Surgery. Orthop. Surg. 2017, 9, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Roche, M.; O’Loughlin, P.F.; Kendoff, D.; Musahl, V.; Pearle, A.D. Robotic arm-assisted unicompartmental knee arthroplasty: Preoperative planning and surgical technique. Am. J. Orthop. 2009, 38, 10–15. [Google Scholar]
- Monfaredi, R.; Iordachita, I.; Wilson, E.; Sze, R.; Sharma, K.; Krieger, A.; Fricke, S.; Cleary, K. Development of a shoulder-mounted robot for MRI-guided needle placement: Phantom study. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 1829–1841. [Google Scholar] [CrossRef]
- Kim, G.H.; Patel, N.; Yan, J.; Wu, D.; Li, G.; Cleary, K.; Iordachita, I. Shoulder-mounted Robot for MRI-Guided Arthrography: Clinically Optimized System. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 2019, 1977–1980. [Google Scholar] [CrossRef] [PubMed]
- Kuang, S.; Leung, K.S.; Wang, T.; Hu, L.; Chui, E.; Liu, W.; Wang, Y. A novel passive/active hybrid robot for orthopaedic trauma surgery. Int. J. Med. Robot. 2012, 8, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Khalsa, S.S.S.; Mummaneni, P.V.; Chou, D.; Park, P. Present and Future Spinal Robotic and Enabling Technologies. Oper. Neurosurg. 2021, 21, S48–S56. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Zech, S.; Westphal, R.; Klimesch, Y.; Gosling, T. Robotic cadaver testing of a new total ankle prosthesis model (German Ankle System). Foot Ankle Int. 2007, 28, 1276–1286. [Google Scholar] [CrossRef]
- Gebremeskel, M.; Shafiq, B.; Uneri, A.; Sheth, N.; Simmerer, C.; Zbijewski, W.; Siewerdsen, J.H.; Cleary, K.; Li, G. Quantification of manipulation forces needed for robot-assisted reduction of the ankle syndesmosis: An initial cadaveric study. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 2263–2267. [Google Scholar] [CrossRef]
- Sakakibara, Y.; Teramoto, A.; Takagi, T.; Yamakawa, S.; Shoji, H.; Okada, Y.; Kobayashi, T.; Kamiya, T.; Fujimiya, M.; Fujie, H.; et al. Effects of the Ankle Flexion Angle During Anterior Talofibular Ligament Reconstruction on Ankle Kinematics, Laxity, and In Situ Forces of the Reconstructed Graft. Foot Ankle Int. 2022, 43, 725–732. [Google Scholar] [CrossRef]
- Peeters, K.; Natsakis, T.; Burg, J.; Spaepen, P.; Jonkers, I.; Dereymaeker, G.; Vander Sloten, J. An in vitro approach to the evaluation of foot-ankle kinematics: Performance evaluation of a custom-built gait simulator. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2013, 227, 955–967. [Google Scholar] [CrossRef]
- Lee, D.G.; Davis, B.L. Assessment of the effects of diabetes on midfoot joint pressures using a robotic gait simulator. Foot Ankle Int. 2009, 30, 767–772. [Google Scholar] [CrossRef]
- Henry, J.K.; Sturnick, D.; Rosenbaum, A.; Saito, G.H.; Deland, J.; Steineman, B.; Demetracopoulos, C. Cadaveric Gait Simulation of the Effect of Subtalar Arthrodesis on Total Ankle Replacement Kinematics. Foot Ankle Int. 2022, 43, 1110–1117. [Google Scholar] [CrossRef]
- Jackson, L.T.; Aubin, P.M.; Cowley, M.S.; Sangeorzan, B.J.; Ledoux, W.R. A robotic cadaveric flatfoot analysis of stance phase. J. Biomech. Eng. 2011, 133, 051005. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, Z.; Yuan, C.; Geng, X.; Yu, J.; Zhang, C.; Huang, J.; Wang, X.; Ma, X. In vitro study of foot bone kinematics via a custom-made cadaveric gait simulator. J. Orthop. Surg. Res. 2020, 15, 346. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, E.C.; Aubin, P.M.; Ledoux, W.R. Foot bone kinematics as measured in a cadaveric robotic gait simulator. Gait Posture 2011, 33, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Clanton, T.O.; Williams, B.T.; Backus, J.D.; Dornan, G.J.; Liechti, D.J.; Whitlow, S.R.; Saroki, A.J.; Turnbull, T.L.; LaPrade, R.F. Biomechanical Analysis of the Individual Ligament Contributions to Syndesmotic Stability. Foot Ankle Int. 2017, 38, 66–75. [Google Scholar] [CrossRef]
- El Daou, H.; Calder, J.D.; Stephen, J.M. Development and validation of a robotic system for ankle joint testing. Med. Eng. Phys. 2018, 62, 53–57. [Google Scholar] [CrossRef] [PubMed]
- El Daou, H.; Lord, B.; Amis, A.; Rodriguez y Baena, F. Assessment of pose repeatability and specimen repositioning of a robotic joint testing platform. Med. Eng. Phys. 2017, 47, 210–213. [Google Scholar] [CrossRef]
- El Daou, H.; Ng, K.C.G.; Van Arkel, R.; Jeffers, J.R.T.; Rodriguez, Y.B.F. Robotic hip joint testing: Development and experimental protocols. Med. Eng. Phys. 2019, 63, 57–62. [Google Scholar] [CrossRef]
- Debski, R.E.; Yamakawa, S.; Musahl, V.; Fujie, H. Use of Robotic Manipulators to Study Diarthrodial Joint Function. J. Biomech. Eng. 2017, 139, 021010. [Google Scholar] [CrossRef]
- Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical Image Analysis using Convolutional Neural Networks: A Review. J. Med. Syst. 2018, 42, 226. [Google Scholar] [CrossRef] [Green Version]
- Ashkani-Esfahani, S.; Mojahed Yazdi, R.; Bhimani, R.; Kerkhoffs, G.M.; Maas, M.; DiGiovanni, C.W.; Lubberts, B.; Guss, D. Detection of ankle fractures using deep learning algorithms. Foot Ankle Surg. 2022, 28, 1259–1265. [Google Scholar] [CrossRef]
- Kitamura, G.; Chung, C.Y.; Moore, B.E., 2nd. Ankle Fracture Detection Utilizing a Convolutional Neural Network Ensemble Implemented with a Small Sample, De Novo Training, and Multiview Incorporation. J. Digit. Imaging 2019, 32, 672–677. [Google Scholar] [CrossRef] [Green Version]
- Aghnia Farda, N.; Lai, J.Y.; Wang, J.C.; Lee, P.Y.; Liu, J.W.; Hsieh, I.H. Sanders classification of calcaneal fractures in CT images with deep learning and differential data augmentation techniques. Injury 2021, 52, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Pranata, Y.D.; Wang, K.C.; Wang, J.C.; Idram, I.; Lai, J.Y.; Liu, J.W.; Hsieh, I.H. Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images. Comput. Methods Programs Biomed. 2019, 171, 27–37. [Google Scholar] [CrossRef]
- Anderson, P.G.; Baum, G.L.; Keathley, N.; Sicular, S.; Venkatesh, S.; Sharma, A.; Daluiski, A.; Potter, H.; Hotchkiss, R.; Lindsey, R.V.; et al. Deep Learning Assistance Closes the Accuracy Gap in Fracture Detection Across Clinician Types. Clin. Orthop. Relat. Res. 2022. [Google Scholar] [CrossRef]
- Olczak, J.; Emilson, F.; Razavian, A.; Antonsson, T.; Stark, A.; Gordon, M. Ankle fracture classification using deep learning: Automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification reaches a high degree of correct classification. Acta Orthop. 2021, 92, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Kausch, L.; Kunze, H.; Privalov, M.; Klein, A.; Barbari, J.E.; Martin Vicario, C.; Franke, J.; Maier-Hein, K. Computer-assisted contralateral side comparison of the ankle joint using flat panel technology. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 767–777. [Google Scholar] [CrossRef]
- Richter, M. Computer aided surgery in foot and ankle: Applications and perspectives. Int. Orthop. 2013, 37, 1737–1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutaish, H.; Acker, A.; Drittenbass, L.; Stern, R.; Assal, M. Computer-assisted surgery and navigation in foot and ankle: State of the art and fields of application. EFORT Open Rev. 2021, 6, 531–538. [Google Scholar] [CrossRef]
- Richter, M.; Zech, S. Intraoperative 3-dimensional imaging in foot and ankle trauma-experience with a second-generation device (ARCADIS-3D). J. Orthop. Trauma 2009, 23, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Kendoff, D.; Citak, M.; Gardner, M.; Kfuri, M., Jr.; Thumes, B.; Krettek, C.; Hüfner, T. Three-dimensional fluoroscopy for evaluation of articular reduction and screw placement in calcaneal fractures. Foot Ankle Int. 2007, 28, 1165–1171. [Google Scholar] [CrossRef]
- Geerling, J.; Zech, S.; Kendoff, D.; Citak, M.; O’Loughlin, P.F.; Hüfner, T.; Krettek, C.; Richter, M. Initial Outcomes of 3-Dimensional Imaging-Based Computer-Assisted Retrograde Drilling of Talar Osteochondral Lesions. Am. J. Sport. Med. 2009, 37, 1351–1357. [Google Scholar] [CrossRef]
- Zeitlin, J.; Henry, J.; Ellis, S. Preoperative Guidance With Weight-Bearing Computed Tomography and Patient-Specific Instrumentation in Foot and Ankle Surgery. HSS J. 2021, 17, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, A.; Horan, T.; Molloy, R.M.; Bloomfield, M.R.; Patel, P.D.; Piuzzi, N.S. A clinical review of robotic navigation in total knee arthroplasty: Historical systems to modern design. EFORT Open Rev. 2021, 6, 252–269. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, V.O.; Gadekar, A.P.; Vaidya, N. Does robotic technology successfully restore the joint line after total knee arthroplasty? A retrospective analysis. Arthroplasty 2022, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Rajan, P.V.; Khlopas, A.; Klika, A.; Molloy, R.; Krebs, V.; Piuzzi, N.S. The Cost-Effectiveness of Robotic-Assisted Versus Manual Total Knee Arthroplasty: A Markov Model-Based Evaluation. J. Am. Acad. Orthop. Surg. 2022, 30, 168–176. [Google Scholar] [CrossRef]
- Weatherall, J.M.; Mroczek, K.; McLaurin, T.; Ding, B.; Tejwani, N. Post-traumatic ankle arthritis. Bull. Hosp. Jt. Dis. 2013, 71, 104–112. [Google Scholar]
- Espinosa, N.; Walti, M.; Favre, P.; Snedeker, J.G. Misalignment of total ankle components can induce high joint contact pressures. J. Bone Jt. Surg. Am. 2010, 92, 1179–1187. [Google Scholar] [CrossRef] [Green Version]
- Kakkar, R.; Siddique, M.S. Stresses in the ankle joint and total ankle replacement design. Foot Ankle Surg. 2011, 17, 58–63. [Google Scholar] [CrossRef]
- Fukuda, T.; Haddad, S.L.; Ren, Y.; Zhang, L.Q. Impact of talar component rotation on contact pressure after total ankle arthroplasty: A cadaveric study. Foot Ankle Int. 2010, 31, 404–411. [Google Scholar] [CrossRef]
- Barg, A.; Elsner, A.; Anderson, A.E.; Hintermann, B. The effect of three-component total ankle replacement malalignment on clinical outcome: Pain relief and functional outcome in 317 consecutive patients. J. Bone Jt. Surg. Am. 2011, 93, 1969–1978. [Google Scholar] [CrossRef]
- Mazzotti, A.; Arceri, A.; Zielli, S.; Bonelli, S.; Viglione, V.; Faldini, C. Patient-specific instrumentation in total ankle arthroplasty. World J. Orthop. 2022, 13, 230–237. [Google Scholar] [CrossRef]
- Daigre, J.; Berlet, G.; Van Dyke, B.; Peterson, K.S.; Santrock, R. Accuracy and Reproducibility Using Patient-Specific Instrumentation in Total Ankle Arthroplasty. Foot Ankle Int. 2017, 38, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Heisler, L.; Vach, W.; Katz, G.; Egelhof, T.; Knupp, M. Patient-Specific Instrumentation vs Standard Referencing in Total Ankle Arthroplasty: A Comparison of the Radiologic Outcome. Foot Ankle Int. 2022, 43, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Saito, G.H.; Sanders, A.E.; O’Malley, M.J.; Deland, J.T.; Ellis, S.J.; Demetracopoulos, C.A. Accuracy of patient-specific instrumentation in total ankle arthroplasty: A comparative study. Foot Ankle Surg. 2019, 25, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Reb, C.W.; Berlet, G.C. Experience with Navigation in Total Ankle Arthroplasty. Is It Worth the Cost? Foot Ankle Clin. 2017, 22, 455–463. [Google Scholar] [CrossRef]
- Hamid, K.S.; Matson, A.P.; Nwachukwu, B.U.; Scott, D.J.; Mather, R.C., 3rd; DeOrio, J.K. Determining the Cost-Savings Threshold and Alignment Accuracy of Patient-Specific Instrumentation in Total Ankle Replacements. Foot Ankle Int. 2017, 38, 49–57. [Google Scholar] [CrossRef]
- Richter, D.; Krähenbühl, N.; Susdorf, R.; Barg, A.; Ruiz, R.; Hintermann, B. What Are the Indications for Implant Revision in Three-component Total Ankle Arthroplasty? Clin. Orthop. Relat. Res. 2021, 479, 601–609. [Google Scholar] [CrossRef]
- Barg, A.; Henninger, H.B.; Knupp, M.; Hintermann, B. Simultaneous bilateral total ankle replacement using a 3-component prosthesis: Outcome in 26 patients followed for 2–10 years. Acta Orthop. 2011, 82, 704–710. [Google Scholar] [CrossRef] [Green Version]
- Saglia, J.A.; Tsagarakis, N.G.; Dai, J.S.; Caldwell, D.G. A High-performance Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation. Int. J. Robot. Res. 2009, 28, 1216–1227. [Google Scholar] [CrossRef]
- Jamwal, P.K.; Hussain, S.; Xie, S. Three-Stage Design Analysis and Multicriteria Optimization of a Parallel Ankle Rehabilitation Robot Using Genetic Algorithm. Autom. Sci. Eng. IEEE Trans. 2015, 12, 1433–1446. [Google Scholar] [CrossRef]
- Jamwal, P.K.; Hussain, S. Multicriteria Design Optimization of a Parallel Ankle Rehabilitation Robot: Fuzzy Dominated Sorting Evolutionary Algorithm Approach. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 589–597. [Google Scholar] [CrossRef]
- Hussain, S.; Jamwal, P.K.; Ghayesh, M.H. State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review. Proc. Inst. Mech. Eng. H 2017, 231, 1224–1234. [Google Scholar] [CrossRef] [PubMed]
- Girone, M.; Burdea, G.; Bouzit, M. Rutgers Ankle orthopedic rehabilitation interface. Am. Soc. Mech. Eng. 1999, 16349, 305–312. [Google Scholar]
- Kubota, S.; Kadone, H.; Shimizu, Y.; Koda, M.; Noguchi, H.; Takahashi, H.; Watanabe, H.; Hada, Y.; Sankai, Y.; Yamazaki, M. Development of a New Ankle Joint Hybrid Assistive Limb. Medicina 2022, 58, 395. [Google Scholar] [CrossRef] [PubMed]
- Blaya, J.; Herr, H. Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 2004, 12, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Yeung, L.F.; Ockenfeld, C.; Pang, M.K.; Wai, H.W.; Soo, O.Y.; Li, S.W.; Tong, K.Y. Randomized controlled trial of robot-assisted gait training with dorsiflexion assistance on chronic stroke patients wearing ankle-foot-orthosis. J. Neuroeng. Rehabil. 2018, 15, 51. [Google Scholar] [CrossRef] [Green Version]
- Halsne, E.G.; Curran, C.S.; Caputo, J.M.; Hansen, A.H.; Hafner, B.J.; Morgenroth, D.C. Emulating the Effective Ankle Stiffness of Commercial Prosthetic Feet Using a Robotic Prosthetic Foot Emulator. J. Biomech. Eng. 2022, 144, 111009. [Google Scholar] [CrossRef]
- Chong, T.H.; Gouwanda, D.; Gopalai, A.; Low, C.Y.; Hanapiah, F.A. Gamification and Control of Nitinol Based Ankle Rehabilitation Robot. Biomimetics 2021, 6, 53. [Google Scholar]
- Roy, A. Robot-Aided Neurorehabilitation: A Novel Robot for Ankle Rehabilitation. IEEE Trans. Robot. 2009, 25, 569–582. [Google Scholar] [CrossRef]
- Patton, J.; Peshkin, M.; Santos-Munne, J.J.; Makhlin, A.; Lewis, E.; Colgate, E.J.; Schwandt, D. KineAssist: Design and development of a robotic overground gait and balance therapy device. Top Stroke Rehabil. 2008, 15, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Davies, T.C.; Xie, S. Effectiveness of robot-assisted therapy on ankle rehabilitation--a systematic review. J. Neuroeng. Rehabil. 2013, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Perez, M.G.; Garcia-Murillo, M.A.; Cervantes-Sánchez, J.J. Robot-assisted ankle rehabilitation: A review. Disabil. Rehabil. Assist. Technol. 2020, 15, 394–408. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, G.; Domingo, A.; Ferris, D. The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury. J. Neuroeng. Rehabil. 2006, 3, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalehzarian, S.P.; Gowd, A.K.; Liu, J.N. Machine learning in orthopaedic surgery. World J. Orthop. 2021, 12, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Burström, G.; Balicki, M.; Patriciu, A.; Kyne, S.; Popovic, A.; Holthuizen, R.; Homan, R.; Skulason, H.; Persson, O.; Edström, E.; et al. Feasibility and accuracy of a robotic guidance system for navigated spine surgery in a hybrid operating room: A cadaver study. Sci. Rep. 2020, 10, 7522. [Google Scholar] [CrossRef] [PubMed]
- Arazpour, M.; Moradi, A.; Samadian, M.; Bahramizadeh, M.; Joghtaei, M.; Ahmadi Bani, M.; Hutchins, S.W.; Mardani, M.A. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study. Prosthet. Orthot. Int. 2016, 40, 377–383. [Google Scholar] [CrossRef]
Author | Year | Type of Study | Key Findings |
---|---|---|---|
Gebremeskel et al. [17] | 2022 | Cadaveric study to quantify ankle manipulation forces to disrupt the syndesmosis | This study quantified manipulaltion forces and suggested an image-guided robotic system to assist with clinical reduction accuracy. |
Sakakibara et al. [18] | 2022 | Cadaveric study assessing ATFL reconstruction at differing degrees of dorsiflexion | ATFL reconstruction with the peroneus longus tendon performed with the graft at 30 degrees of plantar flexion resulted in ankle kinematics and forces similar to those of intact ankles. |
Henry et al. [21] | 2022 | Cadaveric gait simulation to assess the effect of subtalar arthrodesis after TAA | The kinematics of the ankle and talonavicular joint are significantly altered after subtalar arthrodesis is performed in specimens with TAA implants. |
Zhu et al. [23] | 2020 | In-vitro custom gait simulation | Quantified the relational and spatial kinematics of the intrinsic foot bones in the stance phase of the gait cycle. |
El Daou et al. [26] | 2018 | Joint testing system for laxity testing | Compared optical tracking system measurements with a robot’s measurements at different flexion angles, demonstrating similar measurements and validating the robotic testing platform. |
Author | Robot name | Year | Function | Use |
---|---|---|---|---|
Jamwal et al. [61] | Parallel ankle robot | 2015 | Parallel/Platform-based robot | Physical rehabilitation of ankle sprain |
Girone et al. [64] | Rutgers ankle | 2017 | Parallel/Platform-based robot | Rehabilitation in limb disability or reduced mobility. Less weight restrictions compared to exoskeletons. |
Kubota et al. [65] | - | 2020 | Hybrid assistive limb | Therapy for foot drop due to common peroneal palsy or stroke |
Blaya et al. [66] | MIT AAFO | 2004 | Ankle-foot orthosis | Patients with foot drop after neurological injury |
Yeung et al. [67] | - | 2018 | Exoskeleton Ankle-foot orthosis | Stroke patients with motor impairment in walking to assist with gait independency |
Halsne et al. [68] | Caplex system | 2022 | Robotic prosthetic foot emulator | Patients with lower limb amputations |
Chong et al. [69] | Nitinol-based robot | 2021 | Gamification using a Pong game | Interactive rehabilitation for neurologic deficit in post-stroke patients |
Roy et al. [70] | MIT AnkleBot | 2009 | Ankle-foot orthosis | Stroke and central lesion rehabilitation |
Patton et al. [71] | KineAssist | 2008 | Wobble board | Gait training for those with a fall risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stauffer, T.P.; Kim, B.I.; Grant, C.; Adams, S.B.; Anastasio, A.T. Robotic Technology in Foot and Ankle Surgery: A Comprehensive Review. Sensors 2023, 23, 686. https://doi.org/10.3390/s23020686
Stauffer TP, Kim BI, Grant C, Adams SB, Anastasio AT. Robotic Technology in Foot and Ankle Surgery: A Comprehensive Review. Sensors. 2023; 23(2):686. https://doi.org/10.3390/s23020686
Chicago/Turabian StyleStauffer, Taylor P., Billy I. Kim, Caitlin Grant, Samuel B. Adams, and Albert T. Anastasio. 2023. "Robotic Technology in Foot and Ankle Surgery: A Comprehensive Review" Sensors 23, no. 2: 686. https://doi.org/10.3390/s23020686