Enabling the ActiGraph GT9X Link’s Idle Sleep Mode and Inertial Measurement Unit Settings Directly Impacts Data Acquisition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment
2.2. Protocol
2.3. Data Analyses
2.4. Statistical Analyses
3. Results
3.1. The X Sensing Axes
3.2. The Y Sensing Axes
3.3. The Z Sensing Axes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, C.C.; Hsu, Y.L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010, 10, 7772–7788. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Carson, V.; Chaput, J.P.; Connor Gorber, S.; Dinh, T.; Duggan, M.; Faulkner, G.; Gray, C.E.; Gruber, R.; Janson, K.; et al. Canadian 24-Hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. Appl. Physiol. Nutr. Metab. 2016, 41, S311–S327. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.; Runge, R.; Snyder, M. Wearables and the medical revolution. Pers. Med. 2018, 15, 429–448. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, J.A.; Smith, P.J.; Sherwood, A.; Mabe, S.; Snyder, L.; Frankel, C.; McKee, D.C.; Hamilton, N.; Keefe, F.J.; Shearer, S.; et al. Remote Therapy to Improve Outcomes in Lung Transplant Recipients: Design of the INSPIRE-III Randomized Clinical Trial. Transpl. Direct 2020, 6, e535. [Google Scholar] [CrossRef]
- Claes, J.; Cornelissen, V.; McDermott, C.; Moyna, N.; Pattyn, N.; Cornelis, N.; Gallagher, A.; McCormack, C.; Newton, H.; Gillain, A.; et al. Feasibility, Acceptability, and Clinical Effectiveness of a Technology-Enabled Cardiac Rehabilitation Platform (Physical Activity Toward Health-I): Randomized Controlled Trial. J. Med. Internet Res. 2020, 22, e14221. [Google Scholar] [CrossRef]
- Mathie, M.J.; Coster, A.C.; Lovell, N.H.; Celler, B.G. Accelerometry: Providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol. Meas. 2004, 25, R1. [Google Scholar] [CrossRef] [Green Version]
- Montoye, A.H.; Pfeiffer, K.A.; Suton, D.; Trost, S.G. Evaluating the Responsiveness of Accelerometry to Detect Change in Physical Activity. Meas. Phys. Educ. Exerc. Sci. 2014, 18, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Beets, M.W.; Welk, G.J. Everything you wanted to know about selecting the “right” Actigraph accelerometer cut-points for youth, but…: A systematic review. J. Sci. Med. Sport 2012, 15, 311–321. [Google Scholar] [CrossRef] [PubMed]
- ActiGraph Launches GT9X Link Activity Monitor. ActiGraph. Available online: https://theactigraph.com/actigraph-link/ (accessed on 1 September 2022).
- del Rosario, M.B.; Redmond, S.J.; Lovell, N.H. Tracking the Evolution of Smartphone Sensing for Monitoring Human Movement. Sensors 2015, 15, 18901–18933. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Zhao, Y. Sensing movement: Microsensors for body motion measurement. Sensors 2011, 11, 638–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ActiGraph Support Center. Actigraph. Available online: https://actigraphcorp.force.com/support/s/article/Idle-Sleep-Mode-Explained (accessed on 8 November 2018).
- Coyle-Asbil, H.J.; Habegger, J.; Oliver, M.; Vallis, L.A. Examining the Ability of Two Actigraph Models to Detect and Discriminate Between Low Frequency Movements. IEEE Sens. J. 2022, 22, 6378–6386. [Google Scholar] [CrossRef]
- Actigraph White Paper: What is the Utility of Inertial Motion Unit (IMU) Data? Actigraph. Available online: https://s3.amazonaws.com/actigraphcorp.com/wp-content/uploads/2017/11/26205750/ActiGraph_IMU_White_Paper.pdf (accessed on 28 April 2015).
- Crotti, M.; Foweather, L.; Rudd, J.R.; Hurter, L.; Schwarz, S.; Boddy, L.M. Development of raw acceleration cut-points for wrist and hip accelerometers to assess sedentary behaviour and physical activity in 5–7-year-old children. J. Sport. Sci. 2020, 38, 1036–1045. [Google Scholar] [CrossRef]
- Hurter, L.; Fairclough, S.J.; Knowles, Z.R.; Porcellato, L.A.; Cooper-Ryan, A.M.; Boddy, L.M. Establishing Raw Acceleration Thresholds to Classify Sedentary and Stationary Behaviour in Children. Children 2018, 5, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildebrand, M.; Hansen, B.H.; van Hees, V.T.; Ekelund, U. Evaluation of raw acceleration sedentary thresholds in children and adults. Scand. J. Med. Sci. Sport. 2017, 27, 1814–1823. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 51–56. [Google Scholar]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Brazendale, K.; Beets, M.W.; Weaver, R.G.; Perry, M.W.; Tyler, E.B.; Hunt, E.T.; Decker, L.; Chaput, J.P. Comparing measures of free-living sleep in school-aged children. Sleep Med. 2019, 60, 197–201. [Google Scholar] [CrossRef]
- Buchan, D.S.; Boddy, L.M.; McLellan, G. Comparison of Free-Living and Laboratory Activity Outcomes from ActiGraph Accelerometers Worn on the Dominant and Non-Dominant Wrists. Meas. Phys. Educ. Exerc. Sci. 2020, 24, 247–257. [Google Scholar] [CrossRef]
- Montoye, A.H.; Clevenger, K.A.; Pfeiffer, K.A.; Nelson, M.B.; Bock, J.M.; Imboden, M.T.; Kaminsky, L.A. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults. J. Sport. Sci. 2020, 38, 2569–2578. [Google Scholar] [CrossRef] [PubMed]
- Clevenger, K.A.; Pfeiffer, K.A.; Montoye, A.H.K. Cross-Generational Comparability of Raw and Count-Based Metrics from ActiGraph GT9X and wGT3X-BT Accelerometers during Free-Living in Youth. Meas. Phys. Educ. Exerc. Sci. 2020, 24, 194–204. [Google Scholar] [CrossRef]
- Hibbing, P.R.; Lamunion, S.R.; Kaplan, A.S.; Crouter, S.E. Estimating Energy Expenditure with ActiGraph GT9X Inertial Measurement Unit. Med. Sci. Sport. Exerc. 2018, 50, 1093–1102. [Google Scholar] [CrossRef]
- Marcotte, R.; Pedone, C.; Freedson, P.; Staudenmayer, J.; Sirard, J. The Contribution of Gyroscope Data to Accelerometer Estimates of Free-living Physical Behavior Intensity [Conference abstract] (The 8th International Conference on Ambulatory Monitoring of Physical Activity and Movement). J. Meas. Phys. Beahviour 2020, 4, S29. [Google Scholar] [CrossRef]
- Clevenger, K.A.; Brønd, J.C.; Arvidsson, D.; Montoye, A.H.; Mackintosh, K.A.; McNarry, M.A.; Pfeiffer, K.A. Impact of ActiGraph Sampling Rate and Intermonitor Comparability on Measures of Physical Activity in Adults. J. Meas. Phys. Behav. 2021, 4, 287–297. [Google Scholar] [CrossRef]
- Arvidsson, D.; Fridolfsson, J.; Buck, C.; Ekblom, O.; Ekblom-Bak, E.; Lissner, L.; Hunsberger, M.; Borjesson, M. Reexamination of Accelerometer Calibration with Energy Expenditure as Criterion: VO2net Instead of MET for Age-Equivalent Physical Activity Intensity. Sensors 2019, 19, 3377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeschke, L.; Steinbrecher, A.; Boeing, H.; Gastell, S.; Ahrens, W.; Berger, K.; Brenner, H.; Ebert, N.; Fischer, B.; Greiser, K.H.; et al. Factors associated with habitual time spent in different physical activity intensities using multiday accelerometry. Sci. Rep. 2020, 10, 774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolpern, A.E.; Sherwin, K.J.; Moss, W.D.; Nygaard, I.E.; Egger, M.J.; Brusseau, T.A.; Shaw, J.M. Compliance with wrist-worn accelerometers in primiparous early postpartum women. Heliyon 2019, 5, e01193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuster, R.P.; Hagstromer, M.; Baumgartner, D.; Grooten, W.J.A. Concurrent and discriminant validity of ActiGraph waist and wrist cut-points to measure sedentary behaviour, activity level, and posture in office work. BMC Public Health 2021, 21, 345. [Google Scholar] [CrossRef]
Axes | Frequency (Hz) | Setting Parameter | Acceleration (Milli-g) |
---|---|---|---|
X | 0.5 | 1 (ISMONIMUON) | 8.68 (0.97) |
2 (ISMOFFIMUON) | 9.45 (1.58) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
0.75 | 1 (ISMONIMUON) | 12.87 (1.83) | |
2 (ISMOFFIMUON) | 14.15 (1.86) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
1.0 | 1 (ISMONIMUON) | 17.98 (0.96) | |
2 (ISMOFFIMUON) | 18.61 (1.15) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
1.25 | 1 (ISMONIMUON) | 24.81 (1.07) | |
2 (ISMOFFIMUON) | 24.46 (1.65) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
1.5 | 1 (ISMONIMUON) | 31.81 (1.65) | |
2 (ISMOFFIMUON) | 32.08 (0.71) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
2.0 | 1 (ISMONIMUON) | 48.98 (1.48) | |
2 (ISMOFFIMUON) | 48.97 (0.92) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
Y | 0.5 | 1 (ISMONIMUON) | 9.92 (0.59) |
2 (ISMOFFIMUON) | 10.11 (1.12) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
0.75 | 1 (ISMONIMUON) | 13.8 (1.45) | |
2 (ISMOFFIMUON) | 14.08 (1.64) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
1.0 | 1 (ISMONIMUON) | 18.32 (1.43) | |
2 (ISMOFFIMUON) | 18.85 (1.52) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
1.25 | 1 (ISMONIMUON) | 25.46 (1.04) | |
2 (ISMOFFIMUON) | 25.03 (1.63) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
1.5 | 1 (ISMONIMUON) | 32.53 (1.65) | |
2 (ISMOFFIMUON) | 32.06 (1.73) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
2.0 | 1 (ISMONIMUON) | 49.54 (1.22) | |
2 (ISMOFFIMUON) | 49.46 (1.55) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
Z | 0.5 | 1 (ISMONIMUON) | 9.63 (1.67) |
2 (ISMOFFIMUON) | 8.62 (1.62) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
0.75 | 1 (ISMONIMUON) | 14.26 (1.94) | |
2 (ISMOFFIMUON) | 13.3 (1.43) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
1.0 | 1 (ISMONIMUON) | 20.15 (2.25) | |
2 (ISMOFFIMUON) | 19.06 (1.17) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
1.25 | 1 (ISMONIMUON) | 25.92 (1.15) | |
2 (ISMOFFIMUON) | 25.14 (2.04) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
1.5 | 1 (ISMONIMUON) | 34.01 (2.57) | |
2 (ISMOFFIMUON) | 32.45 (2.24) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) | ||
2.0 | 1 (ISMONIMUON) | 50.93 (2.44) | |
2 (ISMOFFIMUON) | 50.07 (2.05) | ||
3 (ISMONIMUOFF) | 0.00 (0.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coyle-Asbil, H.J.; Habegger, J.; Oliver, M.; Vallis, L.A. Enabling the ActiGraph GT9X Link’s Idle Sleep Mode and Inertial Measurement Unit Settings Directly Impacts Data Acquisition. Sensors 2023, 23, 5558. https://doi.org/10.3390/s23125558
Coyle-Asbil HJ, Habegger J, Oliver M, Vallis LA. Enabling the ActiGraph GT9X Link’s Idle Sleep Mode and Inertial Measurement Unit Settings Directly Impacts Data Acquisition. Sensors. 2023; 23(12):5558. https://doi.org/10.3390/s23125558
Chicago/Turabian StyleCoyle-Asbil, Hannah J., Janik Habegger, Michele Oliver, and Lori Ann Vallis. 2023. "Enabling the ActiGraph GT9X Link’s Idle Sleep Mode and Inertial Measurement Unit Settings Directly Impacts Data Acquisition" Sensors 23, no. 12: 5558. https://doi.org/10.3390/s23125558
APA StyleCoyle-Asbil, H. J., Habegger, J., Oliver, M., & Vallis, L. A. (2023). Enabling the ActiGraph GT9X Link’s Idle Sleep Mode and Inertial Measurement Unit Settings Directly Impacts Data Acquisition. Sensors, 23(12), 5558. https://doi.org/10.3390/s23125558