Improving the Quantification of Colorimetric Signals in Paper-Based Immunosensors with an Open-Source Reader
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hardware
2.2. Software
2.3. System Integration and User Interface
2.4. LFIA Analysis of Plasma Sample
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roda, A.; Cavalera, S.; Di Nardo, F.; Calabria, D.; Rosati, S.; Simoni, P.; Colitti, B.; Baggiani, C.; Roda, M.; Anfossi, L. Dual Lateral Flow Optical/Chemiluminescence Immunosensors for the Rapid Detection of Salivary and Serum IgA in Patients with COVID-19 Disease. Biosens. Bioelectron. 2021, 172, 112765. [Google Scholar] [CrossRef]
- Diani, E.; Piccaluga, P.P.; Lotti, V.; Di Clemente, A.; Ligozzi, M.; De Nardo, P.; Lambertenghi, L.; Pizzolo, F.; Friso, S.; Lo Cascio, G.; et al. Assessment of SARS-CoV-2 IgG and IgM Antibody Detection with a Lateral Flow Immunoassay Test. Heliyon 2021, 7, e08192. [Google Scholar] [CrossRef] [PubMed]
- Vaquer, A.; Alba-Patiño, A.; Adrover-Jaume, C.; Russell, S.M.; Aranda, M.; Borges, M.; Mena, J.; del Castillo, A.; Socias, A.; Martín, L.; et al. Nanoparticle Transfer Biosensors for the Non-Invasive Detection of SARS-CoV-2 Antigens Trapped in Surgical Face Masks. Sens. Actuators B Chem. 2021, 345, 130347. [Google Scholar] [CrossRef] [PubMed]
- Adrover-Jaume, C.; Alba-Patiño, A.; Clemente, A.; Santopolo, G.; Vaquer, A.; Russell, S.M.; Barón, E.; del Mar González del Campo, M.; Ferrer, J.M.; Berman-Riu, M.; et al. Paper Biosensors for Detecting Elevated IL-6 Levels in Blood and Respiratory Samples from COVID-19 Patients. Sens. Actuators B Chem. 2021, 330, 129333. [Google Scholar] [CrossRef] [PubMed]
- Cavalera, S.; Colitti, B.; Rosati, S.; Ferrara, G.; Bertolotti, L.; Nogarol, C.; Guiotto, C.; Cagnazzo, C.; Denina, M.; Fagioli, F.; et al. A Multi-Target Lateral Flow Immunoassay Enabling the Specific and Sensitive Detection of Total Antibodies to SARS COV-2. Talanta 2021, 223, 121737. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y.; Lee, J.-H.; Kim, M.J.; Park, S.C.; Choi, M.; Lee, W.; Ku, K.B.; Kim, B.T.; Park, E.C.; Kim, H.G.; et al. Development of a SARS-CoV-2-Specific Biosensor for Antigen Detection Using ScFv-Fc Fusion Proteins. Biosens. Bioelectron. 2021, 175, 112868. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors 2021, 21, 5185. [Google Scholar] [CrossRef] [PubMed]
- Quesada-González, D.; Merkoçi, A. Nanoparticle-Based Lateral Flow Biosensors. Biosens. Bioelectron. 2015, 73, 47–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borse, V.B.; Konwar, A.N.; Jayant, R.D.; Patil, P.O. Perspectives of Characterization and Bioconjugation of Gold Nanoparticles and Their Application in Lateral Flow Immunosensing. Drug Deliv. Transl. Res. 2020, 10, 878–902. [Google Scholar] [CrossRef] [PubMed]
- Antiochia, R. Paper-Based Biosensors: Frontiers in Point-of-Care Detection of COVID-19 Disease. Biosensors 2021, 11, 110. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.L.; Wang, J.; Maruthamuthu, M.K.; Dextre, A.; Pascual-Garrigos, A.; Mohan, S.; Putikam, S.V.S.; Osman, F.O.I.; McChesney, D.; Seville, J.; et al. A Paper-Based Colorimetric Molecular Test for SARS-CoV-2 in Saliva. Biosens. Bioelectron. X 2021, 9, 100076. [Google Scholar] [CrossRef] [PubMed]
- Arboleda, V.A.; Garner, O.B. Ensuring the Quality of Point-of-Care Testing in a Large and Decentralized Ambulatory Care Setting. Am. J. Clin. Pathol. 2017, 148, 336–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicol, T.; Lefeuvre, C.; Serri, O.; Pivert, A.; Joubaud, F.; Dubée, V.; Kouatchet, A.; Ducancelle, A.; Lunel-Fabiani, F.; Le Guillou-Guillemette, H. Assessment of SARS-CoV-2 Serological Tests for the Diagnosis of COVID-19 through the Evaluation of Three Immunoassays: Two Automated Immunoassays (Euroimmun and Abbott) and One Rapid Lateral Flow Immunoassay (NG Biotech). J. Clin. Virol. 2020, 129, 104511. [Google Scholar] [CrossRef] [PubMed]
- Luka, G.S.; Nowak, E.; Kawchuk, J.; Hoorfar, M.; Najjaran, H. Portable Device for the Detection of Colorimetric Assays. R. Soc. Open Sci. 2017, 4, 171025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J. An Optimized Colorimetric Readout Method for Lateral Flow Immunoassays. Sensors 2018, 18, 4084. [Google Scholar] [CrossRef] [PubMed]
- Coleman, B.; Coarsey, C.; Kabir, M.A.; Asghar, W. Point-of-Care Colorimetric Analysis through Smartphone Video. Sens. Actuators B Chem. 2019, 282, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.; Oliveira, J.; Cruz, J. Open Standards and Open Source: Enabling Interoperability. Int. J. Softw. Eng. Appl. 2010, 2, 1–11. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 4 Point OpenCV GetPerspective Transform Example—PyImageSearch. Available online: https://web.archive.org/web/20220203072207/https://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ (accessed on 3 February 2022).
- How to Build a Kick-Ass Mobile Document Scanner in Just 5 Minutes—PyImageSearch. Available online: https://web.archive.org/web/20211020094920/https://www.pyimagesearch.com/2014/09/01/build-kick-ass-mobile-document-scanner-just-5-minutes/ (accessed on 3 February 2022).
- Ordering Coordinates Clockwise with Python and OpenCV—PyImageSearch. Available online: https://web.archive.org/web/20220203073105/https://www.pyimagesearch.com/2016/03/21/ordering-coordinates-clockwise-with-python-and-opencv/ (accessed on 3 February 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russell, S.M.; Alba-Patiño, A.; Vaquer, A.; Clemente, A.; de la Rica, R. Improving the Quantification of Colorimetric Signals in Paper-Based Immunosensors with an Open-Source Reader. Sensors 2022, 22, 1880. https://doi.org/10.3390/s22051880
Russell SM, Alba-Patiño A, Vaquer A, Clemente A, de la Rica R. Improving the Quantification of Colorimetric Signals in Paper-Based Immunosensors with an Open-Source Reader. Sensors. 2022; 22(5):1880. https://doi.org/10.3390/s22051880
Chicago/Turabian StyleRussell, Steven M., Alejandra Alba-Patiño, Andreu Vaquer, Antonio Clemente, and Roberto de la Rica. 2022. "Improving the Quantification of Colorimetric Signals in Paper-Based Immunosensors with an Open-Source Reader" Sensors 22, no. 5: 1880. https://doi.org/10.3390/s22051880
APA StyleRussell, S. M., Alba-Patiño, A., Vaquer, A., Clemente, A., & de la Rica, R. (2022). Improving the Quantification of Colorimetric Signals in Paper-Based Immunosensors with an Open-Source Reader. Sensors, 22(5), 1880. https://doi.org/10.3390/s22051880